克鲁斯卡尔算法的介绍
1)克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法。
2)基本思想:按照权值从小到大的顺序选择 n-1条边,并保证这 n-1条边不构成回路
3)具体做法:首先构造一个只含 n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回路,直至森林变成一棵树为止
首先我们得明白,在解决求最小生成树的算法里,主要就是克鲁斯卡尔算法和普利姆算法,他们两个,我个人觉得,有相似之处也有不同之处,相较于普利姆算法,克鲁斯卡尔算法虽然也是依次找出权值最小的路径,但是他加入了判断是否构成回路的条件和对每条边进行了排序
下面我们举例来说明
克鲁斯卡尔算法解决公交问题
看一个应用场景和问题:
1)某城市新增 7个站点(A, B, C, D, E, F, G),现在需要修路把 7个站点连通
2)各个站点的距离用边线表示(权),比如A–B距离12公里
3)问:如何修路保证各个站点都能连通,并且总的修建公路总里程最短?

克鲁斯卡尔算法的步骤
第 1步:将边<E,F>加入 R中。边<E,F>的权值最小,因此将它加入到最小生成树结果 R中。(可能会有人问,为什么要先将<E,F>加入R中,别忘了,我们是要生成最小生成树,所以一定先从权值最低的边开始)
第 2步:将边<C,D>加入 R中。上一步操作之后,边<C,D>的权值最小,因此将它加入到最小生成树结果 R中。
第 3步:将边<D,E>加入 R中。上一步操作之后,边<D,E>的权值最小,因此将它加入到最小生成树结果 R中。
第 4步:将边<B,F>加入 R中。上一步操作之后,边<C,E>的权值最小,但<C,E>会和已有的边构成回路;因此,跳过边<C,E>。同理,跳过边<C,F>。将边<B,F>加入到最小生成树结果 R中。
第 5步:将边<E,G>加入 R中。上一步操作之后,边<E,G>的权值最小,因此将它加入到最小生成树结果 R中。
第 6步:将边<A,B>加入 R中。上一步操作之后,边<F,G>的权值最小,但<F,G>会和已有的边构成回路;因此,跳过边<F,G>。同理,跳过边<B,C>。将边<A,B>加入到最小生成树结果 R中。
此时,最小生成树构造完成!它包括的边依次是:<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>。

可能大家看过步骤之后可能有疑问有的时候明明有些边的权值小,为什么不加
呢,这是因为如果加上这条边,则整个树构成了回路,这是此算法不允许的,那么你可能又要问了,那你怎么知道这条边加进去之后构不构成回路呢。这里我们来说明下克鲁斯卡尔算法处理是否构成回路的方法
处理方法是:记录顶点在"最小生成树"中的终点,顶点的终点是"在最小生成树中与它连通的最大顶点"。然后每次需要将一条边添加到最小生存树时,判断该边的两个顶点的终点是否重合,重合的话则会构成回路。咱们举例说明:
在将<E,F> <C,D> <D,E>加入到最小生成树 R中之后,这几条边的顶点就都有了终点:
(01) C的终点是 F。
(02) D的终点是 F。
(03) E的终点是 F。
(04) F的终点是 F。
关于终点的说明:
1)就是将所有顶点按照从小到大的顺序排列好之后;某个顶点的终点就是"与它连通的最大顶点"。
2)因此,接下来,虽然<C,E>是权值最小的边。但是 C和 E的终点都是 F,即它们的终点相同,因此,将<C,E>加入最小生成树的话,会形成回路。这就是判断回路的方式。也就是说,我们加入的边的两个顶点不能都指向同一
个终点,否则将构成回路。【后面有代码说明】
代码
package kruskal;import java.util.Arrays;public class KruskalCase {private int edgeNum; //边的个数private char[] vertexs; //顶点数组private int[][] matrix; //邻接矩阵//使用 INF 表示两个顶点不能连通private static final int INF = Integer.MAX_VALUE;public static void main(String[] args) {char[] vertexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};//克鲁斯卡尔算法的邻接矩阵 int matrix[][] = {/*A*//*B*//*C*//*D*//*E*//*F*//*G*//*A*/ { 0, 12, INF, INF, INF, 16, 14},/*B*/ { 12, 0, 10, INF, INF, 7, INF},/*C*/ { INF, 10, 0, 3, 5, 6, INF},/*D*/ { INF, INF, 3, 0, 4, INF, INF},/*E*/ { INF, INF, 5, 4, 0, 2, 8},/*F*/ { 16, 7, 6, INF, 2, 0, 9},/*G*/ { 14, INF, INF, INF, 8, 9, 0}}; //大家可以在去测试其它的邻接矩阵,结果都可以得到最小生成树.//创建KruskalCase 对象实例KruskalCase kruskalCase = new KruskalCase(vertexs, matrix);//输出构建的kruskalCase.print();kruskalCase.kruskal();}//构造器public KruskalCase(char[] vertexs, int[][] matrix) {//初始化顶点数和边的个数int vlen = vertexs.length;//初始化顶点, 复制拷贝的方式this.vertexs = new char[vlen];for(int i = 0; i < vertexs.length; i++) {this.vertexs[i] = vertexs[i];}//初始化边, 使用的是复制拷贝的方式this.matrix = new int[vlen][vlen];for(int i = 0; i < vlen; i++) {for(int j= 0; j < vlen; j++) {this.matrix[i][j] = matrix[i][j];}}//统计边的条数for(int i =0; i < vlen; i++) {for(int j = i+1; j < vlen; j++) {if(this.matrix[i][j] != INF) {edgeNum++;}}}}public void kruskal() {int index = 0; //表示最后结果数组的索引int[] ends = new int[edgeNum]; //用于保存"已有最小生成树" 中的每个顶点在最小生成树中的终点//创建结果数组, 保存最后的最小生成树EData[] rets = new EData[edgeNum];//获取图中 所有的边的集合 , 一共有12边EData[] edges = getEdges();System.out.println("图的边的集合=" + Arrays.toString(edges) + " 共"+ edges.length); //12//按照边的权值大小进行排序(从小到大)sortEdges(edges);//遍历edges 数组,将边添加到最小生成树中时,判断是准备加入的边否形成了回路,如果没有,就加入 rets, 否则不能加入for(int i=0; i < edgeNum; i++) {//获取到第i条边的第一个顶点(起点)int p1 = getPosition(edges[i].start); //p1=4//获取到第i条边的第2个顶点int p2 = getPosition(edges[i].end); //p2 = 5//获取p1这个顶点在已有最小生成树中的终点int m = getEnd(ends, p1); //m = 4//获取p2这个顶点在已有最小生成树中的终点int n = getEnd(ends, p2); // n = 5//是否构成回路if(m != n) { //没有构成回路ends[m] = n; // 设置m 在"已有最小生成树"中的终点 <E,F> [0,0,0,0,5,0,0,0,0,0,0,0]rets[index++] = edges[i]; //有一条边加入到rets数组}}//<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>。//统计并打印 "最小生成树", 输出 retsSystem.out.println("最小生成树为");for(int i = 0; i < index; i++) {System.out.println(rets[i]);}}//打印邻接矩阵public void print() {System.out.println("邻接矩阵为: \n");for(int i = 0; i < vertexs.length; i++) {for(int j=0; j < vertexs.length; j++) {System.out.printf("%12d", matrix[i][j]);}System.out.println();//换行}}/*** 功能:对边进行排序处理, 冒泡排序* @param edges 边的集合*/private void sortEdges(EData[] edges) {for(int i = 0; i < edges.length - 1; i++) {for(int j = 0; j < edges.length - 1 - i; j++) {if(edges[j].weight > edges[j+1].weight) {//交换EData tmp = edges[j];edges[j] = edges[j+1];edges[j+1] = tmp;}}}}/*** * @param ch 顶点的值,比如'A','B'* @return 返回ch顶点对应的下标,如果找不到,返回-1*/private int getPosition(char ch) {for(int i = 0; i < vertexs.length; i++) {if(vertexs[i] == ch) {//找到return i;}}//找不到,返回-1return -1;}/*** 功能: 获取图中边,放到EData[] 数组中,后面我们需要遍历该数组* 是通过matrix 邻接矩阵来获取* EData[] 形式 [['A','B', 12], ['B','F',7], .....]* @return*/private EData[] getEdges() {int index = 0;EData[] edges = new EData[edgeNum];for(int i = 0; i < vertexs.length; i++) {for(int j=i+1; j <vertexs.length; j++) {if(matrix[i][j] != INF) {edges[index++] = new EData(vertexs[i], vertexs[j], matrix[i][j]);}}}return edges;}/*** 功能: 获取下标为i的顶点的终点(), 用于后面判断两个顶点的终点是否相同* @param ends : 数组就是记录了各个顶点对应的终点是哪个,ends 数组是在遍历过程中,逐步形成* @param i : 表示传入的顶点对应的下标* @return 返回的就是 下标为i的这个顶点对应的终点的下标, 一会回头还有来理解*/private int getEnd(int[] ends, int i) { // i = 4 [0,0,0,0,5,0,0,0,0,0,0,0]while(ends[i] != 0) {i = ends[i];}return i;}}//创建一个类EData ,它的对象实例就表示一条边
class EData {char start; //边的一个点char end; //边的另外一个点int weight; //边的权值//构造器public EData(char start, char end, int weight) {this.start = start;this.end = end;this.weight = weight;}//重写toString, 便于输出边信息@Overridepublic String toString() {return "EData [<" + start + ", " + end + ">= " + weight + "]";}}

















![提问的艺术[转]](http://tieba.github.io/images/howtoask.png)