ChatGPT技术

article/2025/1/24 1:03:39

目录

  • 一、什么是ChatGPT?
  • 二、ChatGPT的技术背景
  • 三、ChatGPT的主要特点
  • 四、ChatGPT的工作原理
  • 五、ChatGPT为何成功?

一、什么是ChatGPT?

ChatGPT本质是一个对话模型,它可以回答日常问题、进行多轮闲聊,也可以承认错误回复、挑战不正确的问题,甚至会拒绝不适当的请求。

二、ChatGPT的技术背景

ChatGPT目前未释出论文文献,仅释出了介绍博文和试用API。从博文中提供的技术点和示意图来看,它与今年初公布的InstructGPT 核心思想一致。其关键能力来自三个方面:强大的基座大模型能力(InstructGPT),高质量的真实数据(干净且丰富),强化学习(PPO算法)。

三、ChatGPT的主要特点

让用户印象最深刻的是它有强大的语言理解和生成系统。其对话能力、文本生成能力、对不同语言表述的理解均很出色。它以对话为载体,可以回答多种多样的日常问题,对于多轮对话历史的记忆能力和篇幅增强。其次,与GPT3等大模型相比,ChatGPT回答更全面,可以多角度全方位进行回答和阐述,相较以往的大模型,知识被“挖掘”得更充分。它能降低了人类学习成本和节省时间成本,可以满足人类大部分日常需求,比如快速为人类改写确定目标的文字、大篇幅续写和生成小说、快速定位代码的bug等。

值得一提的事,它具有安全机制和去除偏见能力。下图这类问题在以前的大模型中时常出现,然而ChatGPT在这两点上增加了过滤处理机制。针对不适当的提问和请求,它可以做出拒绝和“圆滑”的回复。例如对于违法行为的提问:

在这里插入图片描述
对于未知事物的“拒绝”:
在这里插入图片描述
当然ChatGPT并非十全十美,其缺点也比较明显。首先,其简单的逻辑问题错误依旧明显存在,发挥不够稳定(但总体比GPT3好很多)。特别在有对话历史时,它容易因被用户误导而动摇。

在这里插入图片描述
其次,ChatGPT有时会给出看似合理、但并不正确或甚至荒谬的答案。部分答案需要自行甄别才能判断正误,特别当本身用户处于未知状态来咨询模型时,更加无法判断真伪。ChatGPT使得生产者可以用较低成本增加错误信息,而这一固有缺点已经造成了一些实际影响。编程问答网站 StackOverflow 宣布暂时禁止用户发布来自 ChatGPT 生成的内容,网站 mods 表示:看似合理但实际上错误的回复数量太多,已经超过了网站的承受能力。

此外,它抵抗不安全的prompt能力较差,还存在过分猜测用户意图的问题。这主要体现在当用户提问意图不明确时,ChatGPT会猜测用户意图,理想情况应为要求用户澄清;当用户意图不明确时,很大概率给出不合适的回复。大批量的用户反馈,ChatGPT部分回复废话较多、句式固定。它通常过度使用一些常见的短语和句式。这与构造训练数据时,用户倾向于选择更长的回复有关。

四、ChatGPT的工作原理

ChatGPT训练过程很清晰,主要分为三个步骤,示意如图所示:
在这里插入图片描述
第一步,使用有监督学习方式,基于GPT3.5微调训练一个初始模型,训练数据约为2w~3w量级(此处为推测量级,我们根据兄弟模型InstructGPT的训练数据量级估算)。由标注师分别扮演用户和聊天机器人,产生人工精标的多轮对话数据。值得注意的是,在人类扮演聊天机器人时,会得到机器生成的一些建议来帮助人类撰写自己的回复,以此提高撰写标注效率。

以上精标的训练数据虽然数据量不大,但质量和多样性非常高,且来自真实世界数据,这是很关键的一点。

第二步,收集相同上文下,根据回复质量进行排序的数据:即随机抽取一大批Prompt,使用第一阶段微调模型,产生多个不同回答:在这里插入图片描述之后标注人员对k个结果排序,形成训练组数据对。之后使用pairwise loss来训练奖励模型,可以预测出标注者更喜欢哪个输出。"从比较中"学习可以给出相对精确的奖励值。之后使用pairwise loss来训练奖励模型,可以预测出标注者更喜欢哪个输出。"从比较中"学习可以给出相对精确的奖励值。

这一步使得ChatGPT从命令驱动转向了意图驱动。关于这一点,李宏毅老师的原话称,“它会不断引导GPT说人类要他说的”。另外,训练数据不需过多,维持在万量级即可。因为它不需要穷尽所有的问题,只要告诉模型人类的喜好,强化模型意图驱动的能力就行。

第三步,使用PPO强化学习策略来微调第一阶段的模型。这里的核心思想是随机抽取新的Prompt,用第二阶段的Reward Model给产生的回答打分。这个分数即回答的整体reward,进而将此reward回传,由此产生的策略梯度可以更新PPO模型参数。整个过程迭代数次直到模型收敛。

强化学习算法可以简单理解为通过调整模型参数,使模型得到最大的奖励(reward),最大奖励意味着此时的回复最符合人工的选择取向。而对于PPO,我们知道它是2017年OpenAI提出的一种新型的强化学习策略优化的算法即可。它提出了新的目标函数,可以在多个训练步骤实现小批量的更新,其实现简单、易于理解、性能稳定、能同时处理离散/连续动作空间问题、利于大规模训练。

五、ChatGPT为何成功?

为何三段式的训练方法就可以让ChatGPT如此强大?其实,以上的训练过程蕴含了上文我们提到的关键点,而这些关键点正是ChatGPT成功的原因:

  • 强大的基座模型能力(InstructGPT)
  • 大参数语言模型(GPT3.5)
  • 高质量的真实数据(精标的多轮对话数据和比较排序数据)
  • 性能稳定的强化学习算法(PPO算法)

http://chatgpt.dhexx.cn/article/lPDK23JS.shtml

相关文章

【ChatGPT】如何利用ChatGPT来快速统计Excel数据?

自从人工智能横空而出,它在人们的生活中产生了巨大的影响。尤其在企业办公领域,借助人工智能的力量,能够迅速产出丰富多样的内容,无论对于企业还是个人都具有重要的帮助。 想象一下,通过与人工智能的合作,您…

训练一个ChatGPT需要多少数据?

“风很大”的ChatGPT正在席卷全球。作为OpenAI在去年底才刚刚推出的机器人对话模型,ChatGPT在内容创作、客服机器人、游戏、社交等领域的落地应用正在被广泛看好。这也为与之相关的算力、数据标注、自然语言处理等技术开发带来了新的动力。 自OpenAI发布ChatGPT以来…

ChatGPT数据集之谜

半个月以来,ChatGPT这把火越烧越旺。国内很多大厂相继声称要做中文版ChatGPT,还公布了上线时间表,不少科技圈已功成名就的大佬也按捺不住,携巨资下场,要创建“中国版OpenAI“。 不过,看看过去半个月在群众眼…

一文详解 ChatGPT:背后的技术,数据,未来发展

文章目录 一文详解 ChatGPTChatGPT背后的技术基于 Transformer 的预训练语言模型提示学习与指令精调思维链(Chain of Thought,COT)基于人类反馈的强化学习(Reinforcement Learning with Human Feedback,RLHF&#xff0…

“提效”|教你用ChatGPT玩数据

ChatGPT与数据分析(二) 上文给简单聊了一下为什么ChatGPT不能取代数据分析师,本文我们来深入感受一下如何让GPT帮助数据分析师“提效”。 场景一:SQL取数 背景:多数数据分析师都要用SQL语言从数据库中提取数据&#x…

ChatGPT在数据分析中的应用

最近,机器学习和人工智能技术在数据分析领域中发挥着越来越大的作用。而chatgpt正是这个领域最受欢迎的仿人聊天 AI 。但是,对于许多数据科学家和分析师来说,chatgpt并不是他们首选的工具。相反,pandas、sk-learn是数据科学家的最…

chatGPT成功之道-数据

chatGPT之所以能成功,数据和模型都起了很关键的作用,这里重点说说他的数据怎么玩的,主要参考IntructGPT论文数据 prompt分类 InstructGPT论文中将prompt分为10类:生成任务、开放式QA任务、封闭式QA任务、头脑风暴、聊天、改写任…

4个公式8个案例学会与chatGPT对话

一、什么是Prompt? (1)Prompt的概念 我们在使用GPT的时候,给GPT发送的消息就是Prompt. 例如,当我们问ChatGPT"WPS是什么软件?"时: 其中,"WPS是什么软件?"这句话就是Prompt. (2)为什么要学习Prompt? Prompt是我们和GPT交流的方式,我们需要让GPT了解…

和ChatGPT聊天,一定试试这些提问技巧

在和ChatGPT聊天时,要使用清晰简洁的语言,尽量避免使用含糊不清或模糊的词语和语句。 一、首次提问时,用这些方法提问更高效: 1. 用通俗易懂的语言: 尽可能使用通俗易懂的语言提问,不要使用过于专业或难…

日常和 ChatGPT 对话,0403-2

hello Hello! How can I assist you today? Please response me in Chinese. 你好!有什么我可以帮助你的吗? just fine 好的,如果你需要任何帮助,请随时告诉我。 nice to meet you 很高兴认识你!我是ChatGPT&a…

与ChatGPT的一次技术对话

文章目录 前言 - 向引领前沿技术的伟大工作者致敬提问:请给我推荐几个最先进的目标检测AI模型提问:YOLOv4是什么原理,有什么创新提问:请问你知道yolov5吗提问: 那yolov5又有什么创新呢提问:你刚刚的回答正确…

ChatGPT入门案例|商务智能对话客服(一)

ChatGPT是人工智能研究实验室OpenAI新推出的一种人工智能技术驱动的自然语言处理工具,使用了Transformer神经网络架构,也是GPT-3.5架构,这是一种用于处理序列数据的模型,拥有语言理解和文本生成能力,尤其是它会通过连接大量的语料库来训练模型,这些语料库包含了真实世界中…

最近火爆了的对话ChatGPT

前言 相信最近小伙伴们已经被ChatGPT的惊艳效果刷屏了,之前笔者也介绍过一些对话方向的工作,感兴趣的小伙伴可以穿梭: 对话系统最新综述II https://zhuanlan.zhihu.com/p/446760658 在对话系统中建模意图、情感: https://zhuanlan.zhihu.com/…

ChatGPT对话数据备份

ChatGPT对话数据备份 文章目录 ChatGPT对话数据备份1. 背景2. 其他(失败的)方法2.1 右键另存为2.2 直接copy html代码 3. 编写Javascript脚本3.1 思路过程3.2 安装教程3.3 使用说明3.4 最终效果 1. 背景 之前在ChatGPT更新时有好几天都无法查看过往对话…

ChatGPT教程之 01 什么是ChatGPT革命性的对话生成新工具

今天,我想揭开 ChatGPT 的神秘面纱——GANs*(生成对抗网络)的一个迷人的新应用程序,它在 AI 社区中引起了很大的轰动。 对于那些不熟悉 GAN 的人来说,它们是一种神经网络,它使用两个相互竞争的网络——一个生成器和一个鉴别器——来创建逼真的输出。生成器创建假输出,而…

ChatGPT API实现多轮对话的实战代码

大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法…

聊聊ChatGPT是如何组织对话的

为什么要组织对话? 总所周知,ChatGPT的训练大致可分为下图中展示的几个阶段,其中,在Pretraining阶段,模型的训练数据是纯文本,目标是根据上文预测下一个token,而在后面的几个阶段中&#xff0c…

和ChatGPT的一番对话

试用了一下ChatGPT,问了几个问题,虽然对人工智能充满信心,但是ChatGPT给我的感觉还没有形成气候。TA的很多回答是基于一些网络信息进行的糅合,甚至只是简单的复制。不过,毕竟还是处在发展的初级阶段,存在一…

chatgpt这么火?前端如何实现类似chatgpt的对话页面

📋 个人简介 💖 作者简介:大家好,我是阿牛,全栈领域优质创作者😜📝 个人主页:馆主阿牛🔥🎉 支持我:点赞👍收藏⭐️留言📝…

实现chatgpt自然对话

1.概述 ChatGPT是当前自然语言处理领域的重要进展之一,通过预训练和微调的方式,ChatGPT可以生成高质量的文本,可应用于多种场景,如智能客服、聊天机器人、语音助手等。本文将详细介绍ChatGPT的原理、实战演练和流程图&#xff0c…