2.5 总体分布正态性检验
进行参数估计和假设检验时,通常总是假定总体服从正态分布,虽然在许多情况下这个假定是合理的,但是当要以此为前提进行重要的参数估计或假设检验,或者人们对它有较大怀疑的时候,就确有必要对这个假设进行检验,
进行总体正态性检验的方法有很多种,以下针对MATLAB统计工具箱中提供的程序,简单介绍几种方法。
1)Jarque-Bera检验
利用正态分布的偏度g1和峰度g2,构造一个包含g1,g2的分布统计量(自由度n=2),对于显著性水平,当分布统计量小于分布的分位数时,接受H0:总体服从正态分布;否则拒绝H0,即总体不服从正态分布。这个检验适用于大样本,当样本容量n较小时需慎用。Matlab命令:h
=jbtest(x),[h,p,jbstat,cv] =jbtest(x,alpha)。
2)Kolmogorov-Smirnov检验
通过样本的经验分布函数与给定分布函数的比较,推断该样本是否来自给定分布函数的总体。容量n的样本的经验分布函数记为Fn(x),可由样本中小于x的数据所占的比例得到,给定分布函数记为G(x),构造的统计量为,即两个分布函数之差的最大值,对于假设H0:总体服从给定的分布G(x),及给定的,根据Dn的极限分布(n®¥时的分布)确定统计量关于是否接受H0的数量界限。
因为这个检验需要给定G(x),所以当用于正态性检验时只能做标准正态检验,即H0:总体服从标准正态分布。Matlab命令:h =kstest(x)。
3)Lilliefors检验
它将Kolmogorov-Smirnov检验改进用于一般的正态性检验,即H0:总体服从正态分布,其中由样本均值和方差估计。Matlab命令:
h
=lillietest(x),[h,p,lstat,cv]=lillietest(x,alpha)。
4)另外还有一种方法:首先对于数据进行标准化:Z =
ZSCORE(X),然后在进行2)的Kolmogorov-Smirnov检验,检验是否为标准正态分布,类似于对于方法2)的改进
=================================================================
SPSS中做正态分布检验的方法比较简单,利用具体操作过程如下,
Analyze==>Nonparametic
test==>1-sample K-S
可以检验正态分布,均匀分布,泊松分布和指数分布
结果如下
零假设为:样本来自得总体服从正态分布,如果检验显著性水平大于0.05,则不能拒绝零假设,即服从正态分布,反之,如果检验显著性水平小于0.05,那么拒绝零假设,即不服从正态分布。
======================================================================================
还有别的方法,可以参考:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
附带四种检验的解释:
lillietest
函数检验正态性,其实质就是先用样本估计正态分布的参数,然后做 K-S 检验
ttest函数是用来做方差未知时单个正态总体均值的检验,前提是总体服从正态分布,而不是检验数据是否服从正态分布。