VCS简介

article/2025/8/27 6:13:14

1.2.1 关于VCS

VCS是Verilog Compiled Simulator的缩写。VCS MX®是一个编译型的代码仿真器。它使你能够分析,编译和仿真Verilog,VHDL,混合HDL,SystemVerilog,OpenVera和SystemC描述的设计。 它还为您提供了一系列仿真和调试功能,以验证您的设计。 这些功能提供了源码调试和仿真结果查看功能。
vcs提供了一系列的feature,如下图:
VCS技术全家桶

  • 业界领先的性能和兼容性
    无论是RTL还是gate level,还是TLM,或者AMS
  • 高级仿真技术
    X-prop,低功耗,精调的并行化等
  • 次时代的验证planning和覆盖率分析
    verification planner,verdi coverage和formal coverage分析
  • 广泛的语言和方法学支持
    UVM, UPF, Analog Mixed-signal, combined TLM/RTL
    SystemC, SystemVerilog, verilog, VHDL, Mixed-language

1.2.2 VCS setup

通常情况下,公司的IT部门会将工具安装好,一般情况下,不需要我们进行什么设置,下面给出的是万一需要自己安装VCS的时候,需要的设置的环境变量。

setenv VCS_HOME  /tools/synopsys/vcs-2016
set path = ($VCS_HOME/bin $path)
setenv LM_LICENSE_FILE portid@hostname
setenv VCS_CC /usr/bin/gcc

1.2.3 VCS帮助文档

  • /tools/synopsys/vcs-xxx/doc (xxx is release version)
    尽量查阅VCS MX User Guide作为查找某个功能,特性的第一选择
    %> vcs –doc
  • 查看vcs工具提供的一些options,这些options的含义可以在UG中查找
    %> vcs -help
  • 如果是刚入门,可以查看VCS quickstart
    /tools/synopsys/vcs-2016/doc/UserGuide/examples-pdf/systemverilog/vcs_quickstart

1.2.4 善于利用SolvNet

VCS/VCS-MX的所有文档(S家其他EDA工具的文档)都可以在SolvNet上查找到。不仅仅是UG,还有很多用户提交的issue和case,供用户参考。如果你在使用VCS的过程中遇到问题,也可以提交case,Synopsys会有专门的人员来帮助解决问题。
但是SolvNet需要用公司的邮箱注册。

  1. Log in to the SolvNet online support site using your SolvNet account at:
    https://solvnet.synopsys.com/
  2. Click the Documentation tab and select VCS/VCS-MX.

http://chatgpt.dhexx.cn/article/l2dS0v1y.shtml

相关文章

VCC、VDD、VSS以及VBAT的区别

在STM32 的学习中,发现有几种看起来相关的名称,分别是VCC、VDD、VSS、VBAT,在经过搜索查找之后,总结如下: 1.VCC的C是Circuit的意思,是指整个供电回路的电压, 也有人说VCC是双极器件的正极 2.VDD的D是Dev…

Vcc、Vee、Vdd、Vss傻傻分不清楚?

Vcc、Vee、Vdd、Vss傻傻分不清楚? 以下内容源于网络。 电源 左边两个符号均表示电池类直流电源,左边第一个表示电池组,第二个表示单电池。这些符号不一定总是带有 和 - 号。左边第三个(带 和 - 的圆圈符号)表示非电…

semi-supervised classification

半监督学习任务主要分为半监督聚类、半监督分类、半监督回归等问题,我们主要针对半监督分类问题。 半监督学习的假设 基于低密度假设 模型的决策边界不应该将该密度区域划分开,而应该处在低密度区域内。基于平滑化假设 输入空间中&#xf…

Weakly-Supervised Semantic Segmentation via Sub-category Exploration

Weakly-Supervised Semantic Segmentation via Sub-category Exploration Abstract问题 1.Introduction2. Related Work2.1weakly-supervised semantic segmentation(WSSS)弱监督语义分割的初始预测。---Initial Prediction for WSSS.2.2 、Response Refinement for WSSS&#…

Scribble-Supervised Medical Image Segmentation

Scribble-Supervised Medical Image Segmentation via Dual-Branch Network and Dynamically Mixed Pseudo Labels Supervision 摘要 采用草率的分割标注心脏分割双分枝网络:一个编码器,两个解码器动态结合两个解码器的输出伪标签 方法 模型结构 Lpce…

Learning Affinity from Attention End-to-End Weakly-Supervised Semantic Segmentation withTransformers

Learning Affinity from Attention: End-to-End Weakly-Supervised Semantic Segmentation with Transformers 来源:CVPR 2022,武汉大学、京东、悉尼大学 导言 本文是一篇做自然图像弱监督语义分割的论文,利用图像级的类别标签来实现像素级…

Token Contrast for Weakly-Supervised Semantic Segmentation

文章来源:[CVPR2023] Keywords:Weakly-Supervised Semantic Segmentation(WSSS);over-smoothing; ViT 一、本文提出的问题以及解决方案: 本文解决了over-smoothing问题,该问题其实是在之前的GCN网络中提出…

Self-supervised Learning整理

Self-supervised Learning Pre-train Fine-tune Pre-train Fine-tune算是一种Transfer Learning。 首先,假设按照SimCLR中的设定,将一般的模型分为两部分,分别为Encoder和Projection Head。Encoder结构类似于AutoEncoder中的Encoder部分&a…

Supervised Discrete Hashing

Supervised Discrete Hashing 2015 CVPR 问题: 处理施加在追踪的哈希码上的离散约束,使哈希优化具有挑战性(通常是NP- hard)。 解决: 提出了一个新的监督哈希框架,其中的学习目标是生成最优的二进制哈希码用于线性分类。 通过引…

NetVLAD: CNN architecture for weakly supervised place recognition

背景知识: Vector of Locally Aggregated Descriptors(VLAD)image retrieval. 【CC】是广泛使用的图像提取方式,本文是在在这个提取器上做改进;具体是啥下面有介绍 weakly supervised ranking loss 【CC】本文的另外…

Self-Supervised Difference Detection for Weakly-Supervised Semantic Segmentation

Self-Supervised Difference Detection for Weakly-Supervised Semantic Segmentation 摘要1. Introduction2. Related Works3. Method3.1. Difference detection network3.2. Self-supervised difference detection module 论文地址 这篇论文原文的定义实在是太混乱了&#xf…

Unified Deep Supervised Domain Adaptation and Generalization

论文概述 问题研究背景:supervised domain adaptation(SDA),源域有大量带标签的数据,目标域仅有少量可使用的数据 问题的难点:目标域数据不足导致概率分布在语义上很难对齐和区分。对齐指的是源域图片类别之间的关系与目标域图片…

Self-supervised Video Transformer 阅读

目录 1.介绍2.SVT2.1 SVT结构2.2 自监督训练Motion CorrespondencesCross-View Correspondences 2.3 SVT loss 1.介绍 本文是针对video transformer进行自监督训练,从一个给定的视频中,创建具有不同空间大小和帧率的局部和全局时空视图,自监…

最简单的self-supervised方法

从Kaiming的MoCo和Hinton组Chen Ting的SimCLR开始,自监督学习(SSL)成了计算机视觉的热潮显学。凡是大佬大组(Kaiming, VGG,MMLAB等),近两年都是搞了几个自监督方法的。从一开始的新奇兴奋地看着…

弱监督学习 weakly supervised learning 笔记

周志华 A Brief Introduction to Weakly Supervised Learning 2018 引言 在机器学习领域,学习任务可以划分为监督学习、非监督学习。通常,两者都需要从包含大量训练样本的训练数据集中学习预测模型。 监督学习的训练数据包括,数据对象向量…

Supervised Contrastive Learning浅读

目录 前言 1.方法介绍以及结构 2.思路的实现 2.1自监督对比学习 2.2有监督对比学习 3.结果 前言 本文是根据观看了知名油管up主,对Supervised Contrastive Learning这篇文论文的解读写了一点自己的理解,初次接触,理解甚浅。 在文章中…

supervised——>self-supervised

在CV中,以数据与神经网络为基础,我们通常以supervised的方式与unsupervised的方式来进行网络的训练,这些行为的目的都是为了想要使学到的网络能够具有较好的特征表示能力,以进行如分类、目标检测、语义分割等。这两种方式的主要异…

自监督模型 Self-supervised learning(李宏毅2022

这个红色的怪物叫做ELMo 、最早的self-supervised learning model 作业四的模型也是个transformer,只有0.1个million 最早的是ELMo Cookie Monster等你来凑😼 T5是Google做的,跟车子也没什么关系, 在没有label情况下&#xff…

《论文笔记》—— Self-supervised Image-specific Prototype Exploration for Weakly Supervised Semantic Segment

摘要:基于图像级标签的弱监督语义分割(WSSS)由于标注成本低而备受关注。现有的方法通常依赖于类激活映射(CAM)来度量图像像素和分类器权重之间的相关性。然而,分类器只关注识别区域,而忽略每张图像中的其他有用信息,导致定位图不完…

Semi-supervised Learning(半监督学习)

目录 Introduction Why semi-supervised learning help? Semi-supervised Learning for Generative Model Supervised Generative Model Semi-supervised Generative Model Low-density Separation Assumption Self Training Entropy-based Regularization(基…