Vcc、Vee、Vdd、Vss傻傻分不清楚?

article/2025/8/27 6:16:25

Vcc、Vee、Vdd、Vss傻傻分不清楚?

以下内容源于网络。

  1. 电源
    左边两个符号均表示电池类直流电源,左边第一个表示电池组,第二个表示单电池。这些符号不一定总是带有 + 和 - 号。左边第三个(带 + 和 - 的圆圈符号)表示非电池类直流电源。右边第一个表示交流电源。
    在这里插入图片描述
    以下符号主要用于包含多页的大型原理图,或者在主电源连接过多时用于简化原理图。
    在这里插入图片描述
  2. 关于电源符号
    Vdd代表Votage Drain Drain
    Vss代表Votage Source Source
    这些符合最初是用在场效应晶体管上的,现在常用来表示正负电源。
    另一组类似的有:
    Vcc代表Votage Collector Colector
    Vee代表Votage Emitter Emitter
    这组符号相对于上一组符号不太常用。他们源于晶体管的管脚符号,现在也用于表示正负电压了。
    最右边是复杂电路中会出现的另一个表示正负电压的符号。简单的线段上部标有V+或V-的箭头。
    在这里插入图片描述
  3. 关于接地
    下图前两个符号表示机壳接地和大地接地,但这两个经常误用做信号接地。真正的信号地是下端有一个扁平线或箭头,如后两个符合所示。在这里插入图片描述
  4. 关于IEC和ANSI
    目前,共有两项不同标准可作为原理图符号准则:美国国家标准学会 (ANSI) 标准和国际电工委员会 (IEC) 标准。对于元器件的原理图符号,两项标准分别具有各自的版本。请务必选择其中一项标准并严格遵循。只有这样,他人看您所绘制的原理图时才能看懂。否则,要求看图人按原理图修复电子设备,几乎是不可能的任务。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

http://chatgpt.dhexx.cn/article/qQbT9DaG.shtml

相关文章

semi-supervised classification

半监督学习任务主要分为半监督聚类、半监督分类、半监督回归等问题,我们主要针对半监督分类问题。 半监督学习的假设 基于低密度假设 模型的决策边界不应该将该密度区域划分开,而应该处在低密度区域内。基于平滑化假设 输入空间中&#xf…

Weakly-Supervised Semantic Segmentation via Sub-category Exploration

Weakly-Supervised Semantic Segmentation via Sub-category Exploration Abstract问题 1.Introduction2. Related Work2.1weakly-supervised semantic segmentation(WSSS)弱监督语义分割的初始预测。---Initial Prediction for WSSS.2.2 、Response Refinement for WSSS&#…

Scribble-Supervised Medical Image Segmentation

Scribble-Supervised Medical Image Segmentation via Dual-Branch Network and Dynamically Mixed Pseudo Labels Supervision 摘要 采用草率的分割标注心脏分割双分枝网络:一个编码器,两个解码器动态结合两个解码器的输出伪标签 方法 模型结构 Lpce…

Learning Affinity from Attention End-to-End Weakly-Supervised Semantic Segmentation withTransformers

Learning Affinity from Attention: End-to-End Weakly-Supervised Semantic Segmentation with Transformers 来源:CVPR 2022,武汉大学、京东、悉尼大学 导言 本文是一篇做自然图像弱监督语义分割的论文,利用图像级的类别标签来实现像素级…

Token Contrast for Weakly-Supervised Semantic Segmentation

文章来源:[CVPR2023] Keywords:Weakly-Supervised Semantic Segmentation(WSSS);over-smoothing; ViT 一、本文提出的问题以及解决方案: 本文解决了over-smoothing问题,该问题其实是在之前的GCN网络中提出…

Self-supervised Learning整理

Self-supervised Learning Pre-train Fine-tune Pre-train Fine-tune算是一种Transfer Learning。 首先,假设按照SimCLR中的设定,将一般的模型分为两部分,分别为Encoder和Projection Head。Encoder结构类似于AutoEncoder中的Encoder部分&a…

Supervised Discrete Hashing

Supervised Discrete Hashing 2015 CVPR 问题: 处理施加在追踪的哈希码上的离散约束,使哈希优化具有挑战性(通常是NP- hard)。 解决: 提出了一个新的监督哈希框架,其中的学习目标是生成最优的二进制哈希码用于线性分类。 通过引…

NetVLAD: CNN architecture for weakly supervised place recognition

背景知识: Vector of Locally Aggregated Descriptors(VLAD)image retrieval. 【CC】是广泛使用的图像提取方式,本文是在在这个提取器上做改进;具体是啥下面有介绍 weakly supervised ranking loss 【CC】本文的另外…

Self-Supervised Difference Detection for Weakly-Supervised Semantic Segmentation

Self-Supervised Difference Detection for Weakly-Supervised Semantic Segmentation 摘要1. Introduction2. Related Works3. Method3.1. Difference detection network3.2. Self-supervised difference detection module 论文地址 这篇论文原文的定义实在是太混乱了&#xf…

Unified Deep Supervised Domain Adaptation and Generalization

论文概述 问题研究背景:supervised domain adaptation(SDA),源域有大量带标签的数据,目标域仅有少量可使用的数据 问题的难点:目标域数据不足导致概率分布在语义上很难对齐和区分。对齐指的是源域图片类别之间的关系与目标域图片…

Self-supervised Video Transformer 阅读

目录 1.介绍2.SVT2.1 SVT结构2.2 自监督训练Motion CorrespondencesCross-View Correspondences 2.3 SVT loss 1.介绍 本文是针对video transformer进行自监督训练,从一个给定的视频中,创建具有不同空间大小和帧率的局部和全局时空视图,自监…

最简单的self-supervised方法

从Kaiming的MoCo和Hinton组Chen Ting的SimCLR开始,自监督学习(SSL)成了计算机视觉的热潮显学。凡是大佬大组(Kaiming, VGG,MMLAB等),近两年都是搞了几个自监督方法的。从一开始的新奇兴奋地看着…

弱监督学习 weakly supervised learning 笔记

周志华 A Brief Introduction to Weakly Supervised Learning 2018 引言 在机器学习领域,学习任务可以划分为监督学习、非监督学习。通常,两者都需要从包含大量训练样本的训练数据集中学习预测模型。 监督学习的训练数据包括,数据对象向量…

Supervised Contrastive Learning浅读

目录 前言 1.方法介绍以及结构 2.思路的实现 2.1自监督对比学习 2.2有监督对比学习 3.结果 前言 本文是根据观看了知名油管up主,对Supervised Contrastive Learning这篇文论文的解读写了一点自己的理解,初次接触,理解甚浅。 在文章中…

supervised——>self-supervised

在CV中,以数据与神经网络为基础,我们通常以supervised的方式与unsupervised的方式来进行网络的训练,这些行为的目的都是为了想要使学到的网络能够具有较好的特征表示能力,以进行如分类、目标检测、语义分割等。这两种方式的主要异…

自监督模型 Self-supervised learning(李宏毅2022

这个红色的怪物叫做ELMo 、最早的self-supervised learning model 作业四的模型也是个transformer,只有0.1个million 最早的是ELMo Cookie Monster等你来凑😼 T5是Google做的,跟车子也没什么关系, 在没有label情况下&#xff…

《论文笔记》—— Self-supervised Image-specific Prototype Exploration for Weakly Supervised Semantic Segment

摘要:基于图像级标签的弱监督语义分割(WSSS)由于标注成本低而备受关注。现有的方法通常依赖于类激活映射(CAM)来度量图像像素和分类器权重之间的相关性。然而,分类器只关注识别区域,而忽略每张图像中的其他有用信息,导致定位图不完…

Semi-supervised Learning(半监督学习)

目录 Introduction Why semi-supervised learning help? Semi-supervised Learning for Generative Model Supervised Generative Model Semi-supervised Generative Model Low-density Separation Assumption Self Training Entropy-based Regularization(基…

supervised contrastive learning 解读

SupCon 定义: Clusters of points belonging to the same class are pulled together in embedding space, while simultaneously pushing apart clusters of samples from different classes. novelties: 属于同一类的归一化后的特征表示靠得越近越好…

第十章 Supervised PCA

supervised pca很简单粗暴,计算 X X X的每一个纬度和 Y Y Y的相关性,取一个阈值,丢掉一些纬度,然后用普通的pca降维。 如何计算两个随机变量的相关性/相似性? 两个随机变量 X , Y X,Y X,Y,有一个函数 ϕ \p…