UML-顺序图与协作图

article/2025/8/29 17:49:20

实验目的

(1) 理解时序图的基本概念;             (2) 理解协作图的基本概念;

(3) 掌握在Rational Rose中绘制交互图的操作方法。

实验内容

一、概要描述交互场景(存款用例)(文件名命名为存取款交互概要.mdl)

二、设计和绘制自动车锁系统类图;根据类图设计和绘制实现“锁车”用例的顺序图;在顺序图中按【F5】或选择【BrowseàCreat Collaboration Diagram自动生成协作图(文件名命名为CarKey.mdl)

三、饮料销售机主要功能如下:

前端(Front)主要功能:1.接受顾客的选购和现钞  2.从记录器接收找回的零钱并交给顾客  3.返还现钞  4.从分配器接收饮料   5.显示信息

记录器(Register)1.从前端获取顾客输入  2.更新现钞存储  3.找零钱

分配器(Dispenser)1.检查顾客选购的饮料是否有货  2. 分发饮料

1. 设计和绘制饮料销售机类图2. 根据类图和最理想场景、sold-out场景、没有使用合适现金--找零钱场景、没有使用合适零钱--找不开场景顺序图设计和绘制饮料销售机完整顺序图(文件名命名为SodaMachine.mdl)

    最理想场景--顺序图:

sold-out场景--顺序图:

    没有使用合适现金--找零钱场景--顺序图:

没有使用合适零钱--找不开场景--顺序图:


http://chatgpt.dhexx.cn/article/G7NFryRY.shtml

相关文章

顺序图概述

顺序图(Sequence Diagram)是强调消息时间顺序的交互图,它描述了对象之间传送消息的时间顺序,用于表示用例中行为的顺序。顺序图将交互关系表示为一个二维图,横向轴代表了在协作中各独立对象的类元角色,纵向…

数值分析-龙格库塔法

龙格库塔法 数值分析中,龙格-库塔法(Runge-Kutta methods)是用于非线性常微分方程的解的重要的一类隐式或显式迭代法。 这些技术由数学家卡尔龙格和马丁威尔海姆库塔于1900年左右发明。 [1] 龙格-库塔(Runge-Kutta)方法是一种在工…

Matlab 四阶龙格库塔法求解二元常微分方程组

龙格库塔法是一种求解高阶常微分方程的常用方法,在工程当中应用广泛,例如求解物体的运动方程等。 这里我们通过matlab程序编写龙格库塔算法求解二元常微分方程组,假设有常微分方程组: { x − x ˙ 2 y y ˙ − 2 s i n t −…

四阶龙格库塔法求解微分方程【MATLAB||C】

四阶龙格库塔法求解微分方程 作者:PEZHANG 时间:2021.11.6 求解过程数学描述 四阶龙格库塔的求解过程可用如下数学公式描述: k 1 f ( t n , y n ) k_1f\left( t_n,y_n \right) k1​f(tn​,yn​) k 2 f ( t n h 2 , y n h 2 k 1 ) k_2f\…

算法-----龙格-库塔法(转)

数值分析中,龙格-库塔法(Runge-Kutta)是用于模拟常微分方程的解的重要的一类隐式或显式迭代法。这些技术由数学家卡尔龙格和马丁威尔海姆库塔于1900年左右发明。 龙格库塔法的家族中的一个成员如此常用,以至于经常被称…

隐式龙格库塔法举例说明

隐式龙格-库塔法 题目具体分析前期准备确定系数MATLAB求解 题目 用隐式中点公式求解常微分方程: { d y d x y , y ( 0 ) 1. \begin{cases} \dfrac{dy}{dx}y,\\ y(0)1. \end{cases} ⎩⎨⎧​dxdy​y,y(0)1.​ 具体分析 前期准备 首先对和在区间上进行离散化,然…

龙格库塔法求解微分方程

在https://blog.csdn.net/weixin_42141390/article/details/110184743一文中,我们曾经讨论了欧拉法,龙格-库塔法也跟欧拉法一样,是用梯形的面积去替代积分的面积的一种方法。 欧拉法简介 设有微分方程: d x ( t ) d t f ( x )…

数值计算大作业:常微分初值问题数值解法(欧拉法、改进欧拉法、四阶龙格库塔法程序在Matlab中的实现)

作为研究生的入门课,数值计算的大作业算是所有研究生开学的重要编程作业。 我把矩常微分初值问题用欧拉法、改进欧拉法、与四阶龙格库塔法分别在MATLAB中编程实现。具体的程序详细标注后放在文章最后了,每道题我只展示运算结果与结论,需要的同…

Matlab之四阶龙格—库塔法方法:解常微分初值问题

目录 1. 题目 2. 算法原理 3. 代码 4. 结果 4.1 运行结果 4.2 结果分析 【若觉文章质量良好且有用,请别忘了点赞收藏加关注,这将是我继续分享的动力,万分感谢!】 直接通过解题的方式进行学习,代入感更强 1. 题…

龙格库塔方法的原理和案例及MTATLAB编程

文章目录 龙格库塔法的原理利用四阶龙格库塔法求解一个案例用MATLAB编程 龙格库塔法的原理 在百度百科中是这么解释的:在各种龙格-库塔法当中有一个方法十分常用,以至于经常被称为“RK4”或者就是“龙格-库塔法”。该方法主要是在…

欧拉法、改进的欧拉法、龙格-库塔法求解初值问题

求解初值问题 简介前期准备欧拉法改进的欧拉法龙格-库塔法标准四阶显式Kutta公式三级三阶显式公式四级四阶显式Kutta公式四级四阶显式Gill公式 示例MATLAB代码结果 简介 通过求解简单的初值问题: { d u d x f ( x , u ) ( 1 ) u ( x 0 ) u 0 ( 2 ) \begin{cases…

6.2 龙格—库塔法

学习目标: 学习龙格-库塔法的具体明确的学习目标可以有以下几点: 理解龙格-库塔法的基本思想和原理:我们应该了解龙格-库塔法的数值求解思想和数值误差的概念,包括截断误差和稳定性等基本概念,并且要熟悉龙格-库塔法的…

四阶龙格库塔法求解一次常微分方程组(python实现)

四阶龙格库塔法求解一次常微分方程组 一、前言二、RK4求解方程组的要点1. 将方程组转化为RK4求解要求的标准形式2. 注意区分每个方程的独立性 三、python实现RK4求解一次常微分方程组1. 使用的方程组2. python代码3. 运行结果 一、前言 之前在博客发布了关于使用四阶龙格库塔方…

四阶龙格库塔算法及matlab代码

常微分方程 Ordinary differential equation,简称ODE,自变量只有一个的微分方程。 例子1: d y d x f ( x , y ) \dfrac {dy} {dx}f(x,y) dxdy​f(x,y) , f ( x , y ) f(x,y) f(x,y)是已知函数 偏微分方程 Partial differential equation…

经典四阶龙格库塔法

关注微信公众号“二进制小站”~~获取更多分析~~(文末二维码~~) 龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法,经常被称为“RK4”或者就是“龙格库塔法”。 令初值问题表述如下。 对于该问题的RK4由如下方程给出: 其中&…

四阶龙格库塔法(Runge-Kutta)求解常微分方程的 Matlab程序及案例

文章目录 1. 算法2. 程序3. 案例4. 联系作者 1. 算法 上一篇介绍了显式欧拉法、隐式欧拉法、两步欧拉法和改进欧拉法求解常微分方程初值问题;其中显式欧拉法和隐式欧拉法是一阶算法精度,截断误差为 O ( h 2 ) O\left( {{h^2}} \right) O(h2)&#xff1b…

【Runge-Kutta】龙格-库塔法求解微分方程matlab仿真

1.软件版本 MATLAB2013b 2.算法理论 龙格-库塔法(Runge-Kutta)是用于模拟常微分方程的解的重要的一类隐式或显式迭代法。龙格库塔法的家族中的一个成员如此常用,以至于经常被称为“RK4”或者就是“龙格库塔法”。令初值问题表述…

龙格-库塔方法学习笔记

1、龙格-库塔法简介 龙格—库塔法是一种在工程上应用广泛的高精度单步算法,其中包括著名的欧拉法,用于数值求解微分方程。 由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。 在各种龙格—库塔法当中有一个方法十…

四阶龙格库塔法的计算例子

序 没有对比就没有伤害,本文先给出很多时候直接采用的矩形法,然后与四阶龙格库塔法做比较,着重说明四阶龙格库塔法。 一、矩形法 1.1 原理 设微分方程 y ˙ f ( y ) (1.1) \dot yf(y) \tag{1.1} y˙​f(y)(1.1) 求 y y y。 使用数值方法…

龙格-库塔法(Runge-Kutta methods)

非线性的常微分方程通常是难以求出解析解的,只能通过多次迭代求近似的数值解。 龙格-库塔法(Runge-Kutta methods)是用于非线性常微分方程的解的重要的一类隐式或显式迭代法。简写做RK法。 对于任意的Yf(X),假设某点(Xi,Yi)的斜…