四阶龙格库塔法求解一次常微分方程组(python实现)

article/2025/8/29 22:23:25

四阶龙格库塔法求解一次常微分方程组

  • 一、前言
  • 二、RK4求解方程组的要点
    • 1. 将方程组转化为RK4求解要求的标准形式
    • 2. 注意区分每个方程的独立性
  • 三、python实现RK4求解一次常微分方程组
    • 1. 使用的方程组
    • 2. python代码
    • 3. 运行结果

一、前言

之前在博客发布了关于使用四阶龙格库塔方法求解一次常微分方程组的文章,由于代码缺少具体的验证,部分朋友可能存在疑问,因此这里打算再重新写一篇博客来验证一下程序的正确性,另外,这里是使用python语言来实现的。

二、RK4求解方程组的要点

使用RK4求解一元方程的过程是非常容易的,但是当转变成多变量的情况下,如何求解方程组,可能有部分朋友会出现问题,这里我总结出来主要有以下要点。

1. 将方程组转化为RK4求解要求的标准形式

RK4求解要求方程具有形如 y ˙ = f ( y , t ) \dot{y}=f(y,t) y˙=f(y,t)的形式,即是在方程的左边只有变量的一阶微分项,方程的右边包含变量项和自变量项,对于n元情况,我们需要有n个方程,每个方程对应一个自变量项,形式如下:
{ y 1 ˙ = f 1 ( y 1 , ⋯ , y n , t ) ⋮ y n ˙ = f n ( y 1 , ⋯ , y n , t ) \begin{cases} \dot{y_1}=f_1(y_1, \cdots, y_n, t)\\ \quad \quad \vdots \\ \dot{y_n}=f_n(y_1, \cdots, y_n, t)\\ \end{cases} y1˙=f1(y1,,yn,t)yn˙=fn(y1,,yn,t)
转化为标准形式之后就可以进行求解了。

2. 注意区分每个方程的独立性

RK4求解是通过指定一个较小的步进距离,来逐步求解前进一步之后的函数值,每一步下的函数值求解都需要用到前一步的结果,属于递推过程。对于方程组的求解过程,独立性是指针对某个特定变量时,递推公式中只改变特定变量的递推关系,而其它变量不变,例如,方程组中 y i y_i yi的第m+1项的RK4递推关系可以写作:
{ h m = t m + 1 − t m k 1 i m = f i ( y 1 m , ⋯ , y i m , ⋯ , y n m , t m ) k 2 i m = f i ( y 1 m , ⋯ , y i m + h m 2 k 1 i m , ⋯ , y n m , t m + h m 2 ) k 3 i m = f i ( y 1 m , ⋯ , y i m + h m 2 k 2 i m , ⋯ , y n m , t m + h m 2 ) k 4 i m = f i ( y 1 m , ⋯ , y i m + h m k 3 i m , ⋯ , y n m , t m + h m ) y i m + 1 = y i m + h m 6 ( k 1 i m + 2 k 2 i m + 2 k 3 i m + k 4 i m ) \begin{cases} h_m = t_{m+1}-t_m \\ k_{1i}^{m} = f_i(y_1^m, \cdots, y_i^m,\cdots, y_n^m, t_m)\\ k_{2i}^{m} = f_i(y_1^m, \cdots,y_i^m+\frac{h_m}{2}k_{1i}^m,\cdots,y_n^m, t_m+\frac{h_m}{2})\\ k_{3i}^{m} = f_i(y_1^m,\cdots,y_i^m+\frac{h_m}{2}k_{2i}^m,\cdots,y_n^m,t_m+\frac{h_m}{2})\\ k_{4i}^{m} = f_i(y_1^m,\cdots,y_i^m+h_mk_{3i}^m,\cdots,y_n^m,t_m+h_m)\\ y_i^{m+1} = y_i^m+\frac{h_m}{6}(k_{1i}^m+2k_{2i}^m+2k_{3i}^m+k_{4i}^m) \end{cases} hm=tm+1tmk1im=fi(y1m,,yim,,ynm,tm)k2im=fi(y1m,,yim+2hmk1im,,ynm,tm+2hm)k3im=fi(y1m,,yim+2hmk2im,,ynm,tm+2hm)k4im=fi(y1m,,yim+hmk3im,,ynm,tm+hm)yim+1=yim+6hm(k1im+2k2im+2k3im+k4im)
可以看到在RK4关键变量 k 1 , k 2 , k 3 , k 4 k_1,k_2,k_3,k_4 k1,k2,k3,k4的求解过程中,表达式右边只有第 y i y_i yi项对应的部分代入的值有变化,其它 y ∗ y_* y项代入的都是上一步(第m步)的计算结果。

三、python实现RK4求解一次常微分方程组

1. 使用的方程组

这里使用的方程组如下图所示:
equations
可以看到该问题存在解析解,解析解留作验证结果准确性。

2. python代码

实现过程中主要使用了numpy库和matplotlib库,以下为代码:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inlinedef funcXt(x, y):return x + 2.0*ydef funcYt(x, y):return 3.0*x + 2.0*y### RK4求解
t_ini = 0                     # tmin
t_end = 10.0                  # tmax
t_h = 1e-5                    # 步进长度t = np.linspace(t_ini, t_end, int((t_end-t_ini)/t_h+1))
x = t.copy()
y = t.copy()
x[0] = 6.0
y[0] = 4.0
for i in range(t.shape[0]-1):h_i = t[i+1] - t[i]k1_x = funcXt(x[i], y[i])k1_y = funcYt(x[i], y[i])k2_x = funcXt(x[i]+h_i/2.0*k1_x, y[i])k2_y = funcYt(x[i], y[i]+h_i/2.0*k1_y)k3_x = funcXt(x[i]+h_i/2.0*k2_x, y[i])k3_y = funcYt(x[i], y[i]+h_i/2.0*k2_y)k4_x = funcXt(x[i]+h_i*k3_x, y[i])k4_y = funcYt(x[i], y[i]+h_i*k3_y)x[i+1] = x[i] + h_i/6.0*(k1_x+2.0*k2_x+2.0*k3_x+k4_x)y[i+1] = y[i] + h_i/6.0*(k1_y+2.0*k2_y+2.0*k3_y+k4_y)### 解析函数
x_anly = 4.0*np.exp(4.0*t) + 2.0*np.exp(-1.0*t)
y_anly = 6.0*np.exp(4.0*t) - 2.0*np.exp(-1.0*t)### 画图
plt.subplot(1, 2, 1)
plt.plot(t, x, 'b', label='RK4')
plt.plot(t, x_anly, 'r--', label='Analytic')
plt.legend()
plt.xlabel('t')
plt.ylabel('x')
plt.title('x-t')plt.subplot(1, 2, 2)
plt.plot(t, y, 'b', label='RK4')
plt.plot(t, y_anly, 'r--', label='Analytic')
plt.legend()
plt.xlabel('t')
plt.ylabel('y')
plt.title('y-t')# ### 相对误差
# plt.subplot(1, 2, 1)
# plt.scatter(t, (x-x_anly)/x_anly, s=3, label=r'$\frac{x-x_{anly}}{x_{anly}}$')
# plt.legend()
# plt.xlabel('t')
# plt.ylabel('error')
# plt.title('x error')# plt.subplot(1, 2, 2)
# plt.scatter(t, (y-y_anly)/y_anly, s=3, label=r'$\frac{y-y_{anly}}{y_{anly}}$')
# plt.legend()
# plt.xlabel('t')
# plt.ylabel('error')
# plt.title('y error')

3. 运行结果

运行结果为:
output
output1
以上分别是t在0-10和0-1区间上的运行结果,可以看到RK4的计算精度较高,与理论结果较为接近,另外可以看下在0-1区间上RK4的结果相较于理论结果的相对误差:
error
可以看到随着运行步数的增加,RK4计算结果的误差会出现累积,但总体保持在一个相对很低的水平,误差累积的速度较慢。


http://chatgpt.dhexx.cn/article/s7KuJ0EL.shtml

相关文章

四阶龙格库塔算法及matlab代码

常微分方程 Ordinary differential equation,简称ODE,自变量只有一个的微分方程。 例子1: d y d x f ( x , y ) \dfrac {dy} {dx}f(x,y) dxdy​f(x,y) , f ( x , y ) f(x,y) f(x,y)是已知函数 偏微分方程 Partial differential equation…

经典四阶龙格库塔法

关注微信公众号“二进制小站”~~获取更多分析~~(文末二维码~~) 龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法,经常被称为“RK4”或者就是“龙格库塔法”。 令初值问题表述如下。 对于该问题的RK4由如下方程给出: 其中&…

四阶龙格库塔法(Runge-Kutta)求解常微分方程的 Matlab程序及案例

文章目录 1. 算法2. 程序3. 案例4. 联系作者 1. 算法 上一篇介绍了显式欧拉法、隐式欧拉法、两步欧拉法和改进欧拉法求解常微分方程初值问题;其中显式欧拉法和隐式欧拉法是一阶算法精度,截断误差为 O ( h 2 ) O\left( {{h^2}} \right) O(h2)&#xff1b…

【Runge-Kutta】龙格-库塔法求解微分方程matlab仿真

1.软件版本 MATLAB2013b 2.算法理论 龙格-库塔法(Runge-Kutta)是用于模拟常微分方程的解的重要的一类隐式或显式迭代法。龙格库塔法的家族中的一个成员如此常用,以至于经常被称为“RK4”或者就是“龙格库塔法”。令初值问题表述…

龙格-库塔方法学习笔记

1、龙格-库塔法简介 龙格—库塔法是一种在工程上应用广泛的高精度单步算法,其中包括著名的欧拉法,用于数值求解微分方程。 由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。 在各种龙格—库塔法当中有一个方法十…

四阶龙格库塔法的计算例子

序 没有对比就没有伤害,本文先给出很多时候直接采用的矩形法,然后与四阶龙格库塔法做比较,着重说明四阶龙格库塔法。 一、矩形法 1.1 原理 设微分方程 y ˙ f ( y ) (1.1) \dot yf(y) \tag{1.1} y˙​f(y)(1.1) 求 y y y。 使用数值方法…

龙格-库塔法(Runge-Kutta methods)

非线性的常微分方程通常是难以求出解析解的,只能通过多次迭代求近似的数值解。 龙格-库塔法(Runge-Kutta methods)是用于非线性常微分方程的解的重要的一类隐式或显式迭代法。简写做RK法。 对于任意的Yf(X),假设某点(Xi,Yi)的斜…

龙格-库塔(Runge-Kutta)方法C++实现

龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。该算法是构建在数学支持的基础之上的。 1 中点法 2传统二阶龙格库塔法: 3 传统三阶龙格库塔法 4 传…

龙格库塔法

1 基本思想 我们求解常微分方程的时候,某些常微分方程有解析方法,但是大多数的常微分方程只能用数值解法来求解。 数值解法的一个基本特点就是“递进式”,顺着节点的顺序一步一步向前推进。 龙格库塔法的基本思想就是利用f(x,y)在某些特殊点…

关于html中文字空格以及换行符的处理

在阮一峰大神的博客中发现空格原来可以有多种处理方式,过去只知道用$nbsp;真是惭愧。长路漫漫吖 目录 1、html里面的空格2、怎样原样显示空格和换行符2.1 使用pre标签2.2 使用white-space设置样式 3、参考链接 1、html里面的空格 在html里面,空格和换行符…

html5中如何取消换行,html5换行符元素: 元素

1. 基本概念 html5中的元素用于产生一个换行符,它的名称br正是单词break的前两个字母;break本身的含义为“打破、拆分”,在此处就引申为换行的意思。 为什么html5要专门定义一个元素来代表换行符呢?我们平常在办公软件中编辑文本的…

linux换行符 r,\r \n 回车换行符详解

\r \n 回车换行符详解 \r \n 回车换行符详解 \r \n 回车换行符详解1. \r \n 回车换行的含义1.1 \r 回车 1.2 \n 换行 2. \r \n 回车换行的历史2.1 \r \n 回车换行的历史 2.2 发展:linux 和 windows的不同 参考: 1.1 \r 回车 回车 CR (carriage return) 含义:return oldline …

html文本换行符

2019独角兽企业重金招聘Python工程师标准>>> p的样式&#xff1a;white-space:pre;或者white-space:pre-wrap;或者white-space:pre-line; <p> abcdef </p> 转载于:https://my.oschina.net/u/3407699/blog/1829940

在html中js如何给字符串中加换行符

var str 如果有一天休息休息下cvcvx,"\n" 那么&#xff5e;&#xff5e;&#xff5e;; 这种写法在html中是会被识别为"如果有一天休息休息下cvcvx,\n 那么&#xff5e;&#xff5e;&#xff5e;" 那么如何保证其这么写会被识别&#xff0c;只需要在该d…

linux cr换行符,回车符CR和换行符LF

我在Windows电脑上做开发时,经常会见到这个现象。代码从远程git仓库clone下来后,然后npm install安装依赖后,打开任意一个代码文件会看到每行结尾处有如下报红: 将鼠标指针停留在行尾报红处,会浮出如下提示: Expected linebreaks to be LF but found CRLF.eslint(linebre…

文本文件换行符

文本文件的每一行结尾用一个或者两个特殊的ASCII字符进行标识&#xff0c;这个标识就是换行符&#xff0c;不同的操作系统中会采用不同的换行符。 1.CR、LF、CRLF 主要的换行符有三种&#xff1a;LF&#xff08;Line Feed即换行&#xff0c;转义字符用“\n”表示&#xff0c;十…

html语言中的换行标签是,什么是换行符标签

HTML语言中换行的代码是什么&#xff1f; 方法有很多&#xff0c;但要做到用的恰到好处 段落标签 一个段落空一行 效果如下&#xff1a; 是默认的换行&#xff0c;在你要换行的地方加进去就行&#xff0c;单个标签 效果如下&#xff1a; 如果有了 ……&#xff0c;从到中的内容…

html语言换行格式,html换行符br标签

br标签的作用 在 html 源代码中对内容进行编辑,如果直接采用回车换行,那么浏览器解析的结果可能会是一个空格、或者被忽略,正确的做法是使用< br / >标签,在 html 语言中,br标签定义为一个换行符,所以应将它理解为简单的输入一个空行,而不是用来对内容进行分段。 …

html语言换行符,html换行符

在html源代码中对内容进行编辑&#xff0c;如果直接采用回车换行&#xff0c;那么浏览器解析的结果可能会是一个空格、或者被忽略&#xff0c;正确的做法是使用标签&#xff0c;在html语言中&#xff0c;br标签定义为一个换行符&#xff0c;所以应将它理解为简单的输入一个空行…

html怎么换行?换行代码是什么?九种html文字换行方法总结

在用html写网页时&#xff0c;为了让网页中内容看起来整洁流畅&#xff0c;我们需要将其中的文字内容进行换行&#xff0c;那么&#xff0c;html怎么来换行呢&#xff1f;本篇文章就来给大家介绍一下html中给文字换行的方法。 打造全网web前端全栈资料库&#xff08;总目录&am…