关于最短路径算法的理解

article/2025/8/25 5:34:50

“最短路径算法:Dijkstra算法,Bellman-Ford算法,Floyd算法和SPFA算法等。​从某顶点出发,沿图的边到达另一顶点所经过的路径中,各边上权值之和最小的一条路径叫做最短路径。”

我们解决最短路径问题,常用的是Dijkstra与Floyd算法

Dijkstra(迪杰斯特拉)算法

他的算法思想是按路径长度递增的次序一步一步并入来求取,是贪心算法的一个应用,用来解决单源点到其余顶点的最短路径问题。

算法思想

首先,我们引入一个辅助向量D,它的每个分量D[i]表示当前找到的从起始节点v到终点节点vi的最短路径的长度。它的初始态为:若从节点v到节点vi有弧,则D[i]为弧上的权值,否则D[i]为∞,显然,长度为D[j] = Min{D[i] | vi ∈V}的路径就是从v出发最短的一条路径,路径为(v, vi)。
那么,下一条长度次短的最短路径是哪一条呢?假设次短路径的终点是vk,则可想而知,这条路径或者是(v, vk)或者是(v, vj, vk)。它的长度或者是从v到vk的弧上的权值,或者是D[j]和从vj到vk的权值之和。

一般情况下,假设S为已知求得的最短路径的终点集合,则可证明:一下条最短路径(设其终点为x)或者是弧(v, x)或者是中间只经过S中的顶点而最后到达顶点x的路径。这可用反证法来证明,假设此路径上有一个顶点不在S中,则说明存在一条终点不在S中而长度比此路径短的路径。但是这是不可能的。因为,我们是按路径常度的递增次序来产生个最短路径的,故长度比此路径端的所有路径均已产生,他们的终点必定在S集合中,即假设不成立。

因此下一条次短的最短路径的长度是:D[j] = Min{D[i] | vi ∈ V - S},其中,D[i]或者是弧(v, vi)的权值,或者是D[k](vk ∈ S)和弧(vk, vi)上权值之和。

算法描述

假设现要求取如下示例图所示的顶点V0与其余各顶点的最短路径:

在这里插入图片描述
我们使用Guava的ValueGraph作为该图的数据结构,每个顶点对应一个visited变量来表示节点是在V中还是在S中,初始时S中只有顶点V0。然后从nodes集合中遍历找出从V0出发到各节点路径最短的节点,并将该节点并入S中(即修改该节点的visited属性为true),此时就找到了一个顶点的最短路径。然后,我们看看新加入的顶点是否可以到达其他顶点,并且看看通过该顶点到达其他点的路径长度是否比从V0直接到达更短,如果是,则修改这些顶点的权值(即if (D[j] + arcs[j][k] < D[k]) then D[k] = D[j] + arcs[j][k])。然后又从{V - S}中找最小值,重复上述动作,直到所有顶点都并入S中。

Floyd(弗洛伊德)算法

Floyd算法是一个经典的动态规划算法。是解决任意两点间的最短路径(称为多源最短路径问题)的一种算法,可以正确处理有向图或负权的最短路径问题。(动态规划算法是通过拆分问题规模,并定义问题状态与状态的关系,使得问题能够以递推(分治)的方式去解决,最终合并各个拆分的小问题的解为整个问题的解。)

算法思想

从任意节点i到任意节点j的最短路径不外乎2种可能:1)直接从节点i到节点j,2)从节点i经过若干个节点k到节点j。所以,我们假设arcs(i,j)为节点i到节点j的最短路径的距离,对于每一个节点k,我们检查arcs(i,k) + arcs(k,j) < arcs(i,j)是否成立,如果成立,证明从节点i到节点k再到节点j的路径比节点i直接到节点j的路径短,我们便设置arcs(i,j) = arcs(i,k) + arcs(k,j),这样一来,当我们遍历完所有节点k,arcs(i,j)中记录的便是节点i到节点j的最短路径的距离。(由于动态规划算法在执行过程中,需要保存大量的临时状态(即小问题的解),因此它天生适用于用矩阵来作为其数据结构,因此在本算法中,我们将不使用Guava-Graph结构,而采用邻接矩阵来作为本例的数据结构)

算法分析及描述

假设现要求取如下示例图所示任意两点之间的最短路径:

在这里插入图片描述
我们以一个4x4的邻接矩阵(二维数组arcs[ ][ ])作为图的数据结构。比如1号节点到2号节点的路径的权值为2,则arcs[1][2] = 2,2号节点无法直接到达4号节点,则arcs[2][4] = ∞(Integer.MAX_VALUE),则可构造如下矩阵:

在这里插入图片描述
有向图的初始邻接矩阵

根据以往的经验,如果要让任意两个顶点(假设从顶点a到顶点b)之间的距离变得更短,唯一的选择就是引入第三个顶点(顶点k),并通过顶点k中转(a -> k ->b)才可能缩短顶点a到顶点b之间的距离。于是,现在的问题便分解为:求取某一个点k,使得经过中转节点k后,使得两点之间的距离可能变短,且还可能需要中转两个或者多个节点才能使两点之间的距离变短。比如图中的4号节点到3号节点(4 -> 3)的距离原本是12(arcs[4][3] = 12),如果在只通过1号节点时中转时(4 -> 1 ->3),距离将缩短为11(arcs[4][1] + arcs[1][3] = 5 + 6 = 11)。其实1号节点到3号节点也可以通过2号节点中转,使得1号到3号节点的路程缩短为5(arcs[1][2] + arcs[2][3] = 2 + 3 = 5),所以如果同时经过1号和2号两个节点中转的话,从4号节点到3号节点的距离会进一步缩短为10。于是,延伸到一般问题:
1、当不经过任意第三节点时,其最短路径为初始路径,即上图中的邻接矩阵所示。
2、当只允许经过1号节点时,求两点之间的最短路径该如何求呢?只需判断arcs[i][1]+arcs[1][j]是否比arcs[i][j]要小即可。arcs[i][j]表示的是从i号顶点到j号顶点之间的距离,arcs[i][1] + arcs[1][j]表示的是从i号顶点先到1号顶点,再从1号顶点到j号顶点的路程之和。循环遍历一遍二维数组,便可以获取在仅仅经过1号节点时的最短距离。

总结

1.Dijkstra算法是计算图中的一个点到其它点的最小路径.算法思路: 贪心算法.将图中所有点分成 S(已求出解)U(未求出解)2个点集.dist[i]表示v0到v[i]当前已求得得最短路径.A[n][n]为边集1.从剩下的边集合中选出dist最短的边并将边的另一顶点vi从U中加入S.2.更新与vi连接的所有且并未在S中的点的dist矩阵值,dist[vk]=min(dist[vk],dist[vi]+A(i,k)).3.重复上述操作直到U中无与S中的点相连的点.
2.Floyd算法计算图中任意一对点的最短路径.算法思路:  T(n)=O(n^3).动态规划法: Dis(i,j) =min(Dis(i,j), Dis(i,k) + Dis(k,j)).
3.Dijkstra算法为啥不能存在负数边?Dijkstra中S(已求出解)中的每一个点解即最短路径是已求出的,若存在负数路径,可能存在已求出的解不是最优解.

面试题

在这里插入图片描述


http://chatgpt.dhexx.cn/article/3sRkh7Oj.shtml

相关文章

最短路径算法-----Dijkstra迪杰斯特拉算法

最近巩固一下算法&#xff0c;提高自己内力&#xff0c;网上看到查看到这篇介绍很详细的《Dijkstra迪杰斯特拉算法》&#xff0c;在这里转载记录一下。 1 前言 本章介绍迪杰斯特拉算法。和以往一样&#xff0c;本文会先对迪杰斯特拉算法的理论论知识进行介绍&#xff0c;然后给…

Dijkstra 最短路径算法 Python 实现

原文链接 问题描述 使用 Dijkstra 算法求图中的任意顶点到其它顶点的最短路径&#xff08;求出需要经过那些点以及最短距离&#xff09;。 以下图为例&#xff1a; 算法思想 可以使用二维数组来存储顶点之间边的关系 首先需要用一个一维数组 dis 来存储 初始顶点到其余各个顶…

神经网络最短路径算法,最短路径算法的原理

节约里程法求解最短路问题 你只要记住2点之间直线最短。节约里程法是用来解决运输车辆数目不确定的问题的最有名的启发式算法。1、节约里程法优化过程分为并行方式和串行方式两种。 核心思想是依次将运输问题中的两个回路合并为一个回路&#xff0c;每次使合并后的总运输距离…

最短路径算法及Python实现

最短路径问题 在图论中&#xff0c;最短路径问题是指在一个有向或无向的加权图中找到从一个起点到一个终点的最短路径。这个问题是计算机科学中的一个经典问题&#xff0c;也是许多实际问题的基础&#xff0c;例如路线规划、通信网络设计和交通流量优化等。在这个问题中&#…

图论:图的四种最短路径算法

目录&#xff1a; 1.DFS&#xff08;单源最短路径算法&#xff09; 例题1&#xff1a; DFS题目分析&#xff1a; 代码DFS&#xff1a; 2.Floyed&#xff08;时间复杂度On^3&#xff09; 1.应用场景&#xff1a; 2.解析算法&#xff1a; 核心代码1&#xff1a; 我的笔…

图的五种最短路径算法

本文总结了图的几种最短路径算法的实现:深度或广度优先搜索算法,费罗伊德算法,迪杰斯特拉算法,Bellman-Ford 算法。 1)深度或广度优先搜索算法(解决单源最短路径) 从起点开始访问所有深度遍历路径或广度优先路径,则到达终点节点的路径有多条,取其中路径权值最短的一…

最短路径算法——Dijkstra算法——python3实现

本文参考来自数据结构与算法分析 java语言描述。 文章目录 问题描述问题分析实现过程如何使用数据变化表代码实现优先队列中的堆排序使用set代替优先队列得到最短路径 负权边算法改进&#xff08;若为无圈图&#xff09; 问题描述 现有一个有向赋权图。如下图所示&#xff1a;…

最短路径算法的编程与实现 C语言

一 、目的&#xff1a; 1.掌握最短路径算法的基本原理及编程实现&#xff1b; 二 、环境&#xff1a; operating system version&#xff1a;Win11 CPU instruction set: x64 Integrated Development Environment&#xff1a;Viusal Studio 2022 三 、内容&#xff1a; 1…

图的四种最短路径算法

本文总结了图的几种最短路径算法的实现&#xff1a;深度或广度优先搜索算法&#xff0c;弗洛伊德算法&#xff0c;迪杰斯特拉算法&#xff0c;Bellman-Ford算法 1&#xff09;&#xff0c;深度或广度优先搜索算法&#xff08;解决单源最短路径&#xff09; 从起始结点开始访问所…

算法之几个常见的经典最短路径算法

目录 1. Dijkstra算法2. Floyd算法3. Bellman-Ford 算法 1. Dijkstra算法 是解单源最短路径问题的贪心算法。 有一向带权图 G (V, E)&#xff0c;包含右n个顶点&#xff0c;其中每条边的权是非负实数&#xff0c;定义数组 dist 为原点到G中各个顶点的距离&#xff0c;初始化为…

最短路径的四种算法

最短路径四种算法 1234FloydDijkstraBellman-Ford队列优化的Bellman-Ford 一&#xff0c;只有四行的算法——Floyd-Warshall 假设求顶点 V i Vi Vi到 V j Vj Vj的最短路径。弗洛伊德算法依次找从 V i Vi Vi到 V j Vj Vj&#xff0c;中间经过结点序号不大于 0 0 0的最短路径&…

最短路径算法

1.最短路径算法分为单源最短路径算法和多源最短路径算法 &#xff08;a&#xff09;单源最短路径算法&#xff0c;可以计算出从起点到任意一个起点的最短路径。 例如&#xff1a;Dijkstra算法 &#xff0c;SPFA算法 &#xff08;b&#xff09;多源最短路径算法&#xff0c;可…

哈夫曼树及其应用

1、哈夫曼树的基本概念 ---- 哈夫曼&#xff08;Huffman&#xff09;树又称作最优二叉树&#xff0c;它是n个带权叶子结点构成的所有二叉树中&#xff0c;带权路径长度最小的二叉树。 ---- “路径”就是从树中的一个结点到另一个结点之间的分支构成的部分&#xff0c;而分支…

哈夫曼树的C语言实现

什么是哈夫曼树 当用 n 个结点&#xff08;都做叶子结点且都有各自的权值&#xff09;试图构建一棵树时&#xff0c;如果构建的这棵树的带权路径长度最小&#xff0c;称这棵树为“最优二叉树”&#xff0c;有时也叫“赫夫曼树”或者“哈夫曼树”。 在构建哈弗曼树时&#xff0…

哈夫曼树的构建及编码

哈夫曼树的构建及编码 文章目录 哈夫曼树的构建及编码一、什么是哈夫曼树二、什么是哈夫曼编码三、怎么建哈夫曼树、求哈夫曼编码四、为什么哈夫曼编码能实现压缩 声明&#xff1a;关于文件压缩&#xff0c;不是本文的重点&#xff0c;本文只说明并讨论哈夫曼树的构建和编码&am…

如何构建一棵哈夫曼树

给一个数列{10,7,8,3,26,5,1},要求转成为一棵哈夫曼树。 分析思路以及图解&#xff1a; 第一步&#xff1a;将数列进行排序&#xff0c;按从小到大的顺序。最终结果为{1,3,5,7,8,10,26}&#xff0c;根据每个数值创建结点&#xff0c;组成结点数组 第二步&#xff1a;取出权值最…

哈夫曼树 (100分)哈夫曼树

4-1 哈夫曼树 (100分)哈夫曼树 第一行输入一个数n&#xff0c;表示叶结点的个数。 需要用这些叶结点生成哈夫曼树&#xff0c;根据哈夫曼树的概念&#xff0c;这些结点有权值&#xff0c;即weight&#xff0c;题目需要输出哈夫曼树的带权路径长度&#xff08;WPL&#xff09;。…

哈夫曼树的编码和解码

哈夫曼树的作用&#xff1a;在数据通信中&#xff0c;需要将传送的文字转换成二进制的字符串&#xff0c;用0&#xff0c;1码的不同排列来表示字符。例如&#xff0c;需传送的报文为“AFTER DATA EAR ARE ART AREA”&#xff0c;这里用到的字符集为“A&#xff0c;E&#xff0c…

哈夫曼树与哈夫曼编码

哈夫曼树 给定n个权值作为n个叶子结点&#xff0c;构造一棵二叉树&#xff0c;若带权路径长度达到最小&#xff0c;称这样的二叉树为最优二叉树&#xff0c;也称为哈夫曼树(Huffman Tree)。哈夫曼树是带权路径长度最短的树&#xff0c;权值较大的结点离根较近。 树节点间的边…

【例题】哈夫曼树

【例1】由五个分别带权值为9&#xff0c;2&#xff0c;3&#xff0c;5&#xff0c;14的叶子结点构成的一棵哈夫曼树&#xff0c;该树的带权路径长度为_______________。 A、60 B、66 C、67 D、50 答案&#xff1a;C 解析&#xff1a; 关键点在于要学会如何构造哈夫曼树 已知有5…