最短路径算法-----Dijkstra迪杰斯特拉算法

article/2025/8/25 5:36:51

最近巩固一下算法,提高自己内力,网上看到查看到这篇介绍很详细的《Dijkstra迪杰斯特拉算法》,在这里转载记录一下。

1 前言

本章介绍迪杰斯特拉算法。和以往一样,本文会先对迪杰斯特拉算法的理论论知识进行介绍,然后给出C语言的实现。后续再分别给出C++和Java版本的实现。

2 迪杰斯特拉算法介绍

迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。
它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。


2.1 基本思想

     通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算)。

     此外,引进两个集合S和U。S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离)。

     初始时,S中只有起点s;U中是除s之外的顶点,并且U中顶点的路径是"起点s到该顶点的路径"。然后,从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 然后,再从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 ... 重复该操作,直到遍历完所有顶点。


2.2 操作步骤

(1) 初始时,S只包含起点s;U包含除s外的其他顶点,且U中顶点的距离为"起点s到该顶点的距离"[例如,U中顶点v的距离为(s,v)的长度,然后s和v不相邻,则v的距离为∞]。

(2) 从U中选出"距离最短的顶点k",并将顶点k加入到S中;同时,从U中移除顶点k。

(3) 更新U中各个顶点到起点s的距离。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其它顶点的距离;例如,(s,v)的距离可能大于(s,k)+(k,v)的距离。

(4) 重复步骤(2)和(3),直到遍历完所有顶点。

单纯的看上面的理论可能比较难以理解,下面通过实例来对该算法进行说明。

2.3 迪杰斯特拉算法图解

 

以上图G4为例,来对迪杰斯特拉进行算法演示(以第4个顶点D为起点)。

 

 

初始状态:S是已计算出最短路径的顶点集合,U是未计算除最短路径的顶点的集合!


第1步:将顶点D加入到S中。
    此时,S={D(0)}, U={A(∞),B(∞),C(3),E(4),F(∞),G(∞)}。     注:C(3)表示C到起点D的距离是3。

第2步:将顶点C加入到S中。
    上一步操作之后,U中顶点C到起点D的距离最短;因此,将C加入到S中,同时更新U中顶点的距离。以顶点F为例,之前F到D的距离为∞;但是将C加入到S之后,F到D的距离为9=(F,C)+(C,D)。
    此时,S={D(0),C(3)}, U={A(∞),B(13),E(4),F(9),G(∞)}。

第3步:将顶点E加入到S中。
    上一步操作之后,U中顶点E到起点D的距离最短;因此,将E加入到S中,同时更新U中顶点的距离。还是以顶点F为例,之前F到D的距离为9;但是将E加入到S之后,F到D的距离为6=(F,E)+(E,D)。
    此时,S={D(0),C(3),E(4)}, U={A(∞),B(13),F(6),G(12)}。

第4步:将顶点F加入到S中。
    此时,S={D(0),C(3),E(4),F(6)}, U={A(22),B(13),G(12)}。

第5步:将顶点G加入到S中。
    此时,S={D(0),C(3),E(4),F(6),G(12)}, U={A(22),B(13)}。

第6步:将顶点B加入到S中。
    此时,S={D(0),C(3),E(4),F(6),G(12),B(13)}, U={A(22)}。

第7步:将顶点A加入到S中。
    此时,S={D(0),C(3),E(4),F(6),G(12),B(13),A(22)}。

此时,起点D到各个顶点的最短距离就计算出来了:A(22) B(13) C(3) D(0) E(4) F(6) G(12)

3. 迪杰斯特拉算法实现

3.1 C实现

以"邻接矩阵"为例对迪杰斯特拉算法进行说明,对于"邻接表"实现的图在后面会给出相应的源码。

3.1.1. 基本定义

// 邻接矩阵
typedef struct _graph
{char vexs[MAX];       // 顶点集合int vexnum;           // 顶点数int edgnum;           // 边数int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;// 边的结构体
typedef struct _EdgeData
{char start; // 边的起点char end;   // 边的终点int weight; // 边的权重
}EData;

Graph是邻接矩阵对应的结构体。
vexs用于保存顶点,vexnum是顶点数,edgnum是边数;matrix则是用于保存矩阵信息的二维数组。例如,matrix[i][j]=1,则表示"顶点i(即vexs[i])"和"顶点j(即vexs[j])"是邻接点;matrix[i][j]=0,则表示它们不是邻接点。
EData是邻接矩阵边对应的结构体。

3.1.2. 迪杰斯特拉算法

/** Dijkstra最短路径。* 即,统计图(G)中"顶点vs"到其它各个顶点的最短路径。** 参数说明:*        G -- 图*       vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。*     prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。*     dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。*/
void dijkstra(Graph G, int vs, int prev[], int dist[])
{int i,j,k;int min;int tmp;int flag[MAX];      // flag[i]=1表示"顶点vs"到"顶点i"的最短路径已成功获取。// 初始化for (i = 0; i < G.vexnum; i++){flag[i] = 0;              // 顶点i的最短路径还没获取到。prev[i] = 0;              // 顶点i的前驱顶点为0。dist[i] = G.matrix[vs][i];// 顶点i的最短路径为"顶点vs"到"顶点i"的权。}// 对"顶点vs"自身进行初始化flag[vs] = 1;dist[vs] = 0;// 遍历G.vexnum-1次;每次找出一个顶点的最短路径。for (i = 1; i < G.vexnum; i++){// 寻找当前最小的路径;// 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。min = INF;for (j = 0; j < G.vexnum; j++){if (flag[j]==0 && dist[j]<min){min = dist[j];k = j;}}// 标记"顶点k"为已经获取到最短路径flag[k] = 1;// 修正当前最短路径和前驱顶点// 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。for (j = 0; j < G.vexnum; j++){tmp = (G.matrix[k][j]==INF ? INF : (min + G.matrix[k][j])); // 防止溢出if (flag[j] == 0 && (tmp  < dist[j]) ){dist[j] = tmp;prev[j] = k;}}}// 打印dijkstra最短路径的结果printf("dijkstra(%c): \n", G.vexs[vs]);for (i = 0; i < G.vexnum; i++)printf("  shortest(%c, %c)=%d\n", G.vexs[vs], G.vexs[i], dist[i]);
}

 

3.2 C++实现

3.2.1. 基本定义

class MatrixUDG {#define MAX    100#define INF    (~(0x1<<31))        // 无穷大(即0X7FFFFFFF)private:char mVexs[MAX];    // 顶点集合int mVexNum;             // 顶点数int mEdgNum;             // 边数int mMatrix[MAX][MAX];   // 邻接矩阵public:// 创建图(自己输入数据)MatrixUDG();// 创建图(用已提供的矩阵)//MatrixUDG(char vexs[], int vlen, char edges[][2], int elen);MatrixUDG(char vexs[], int vlen, int matrix[][9]);~MatrixUDG();// 深度优先搜索遍历图void DFS();// 广度优先搜索(类似于树的层次遍历)void BFS();// prim最小生成树(从start开始生成最小生成树)void prim(int start);// 克鲁斯卡尔(Kruskal)最小生成树void kruskal();// Dijkstra最短路径void dijkstra(int vs, int vexs[], int dist[]);// 打印矩阵队列图void print();private:// 读取一个输入字符char readChar();// 返回ch在mMatrix矩阵中的位置int getPosition(char ch);// 返回顶点v的第一个邻接顶点的索引,失败则返回-1int firstVertex(int v);// 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1int nextVertex(int v, int w);// 深度优先搜索遍历图的递归实现void DFS(int i, int *visited);// 获取图中的边EData* getEdges();// 对边按照权值大小进行排序(由小到大)void sortEdges(EData* edges, int elen);// 获取i的终点int getEnd(int vends[], int i);
};

MatrixUDG是邻接矩阵对应的结构体。
mVexs用于保存顶点,mVexNum是顶点数,mEdgNum是边数;mMatrix则是用于保存矩阵信息的二维数组。例如,mMatrix[i][j]=1,则表示"顶点i(即mVexs[i])"和"顶点j(即mVexs[j])"是邻接点;mMatrix[i][j]=0,则表示它们不是邻接点。

3.2.2. 迪杰斯特拉算法

/** Dijkstra最短路径。* 即,统计图中"顶点vs"到其它各个顶点的最短路径。** 参数说明:*       vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。*     prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。*     dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。*/
void MatrixUDG::dijkstra(int vs, int prev[], int dist[])
{int i,j,k;int min;int tmp;int flag[MAX];      // flag[i]=1表示"顶点vs"到"顶点i"的最短路径已成功获取。// 初始化for (i = 0; i < mVexNum; i++){flag[i] = 0;              // 顶点i的最短路径还没获取到。prev[i] = 0;              // 顶点i的前驱顶点为0。dist[i] = mMatrix[vs][i]; // 顶点i的最短路径为"顶点vs"到"顶点i"的权。}// 对"顶点vs"自身进行初始化flag[vs] = 1;dist[vs] = 0;// 遍历mVexNum-1次;每次找出一个顶点的最短路径。for (i = 1; i < mVexNum; i++){// 寻找当前最小的路径;// 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。min = INF;for (j = 0; j < mVexNum; j++){if (flag[j]==0 && dist[j]<min){min = dist[j];k = j;}}// 标记"顶点k"为已经获取到最短路径flag[k] = 1;// 修正当前最短路径和前驱顶点// 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。for (j = 0; j < mVexNum; j++){tmp = (mMatrix[k][j]==INF ? INF : (min + mMatrix[k][j]));if (flag[j] == 0 && (tmp  < dist[j]) ){dist[j] = tmp;prev[j] = k;}}}// 打印dijkstra最短路径的结果cout << "dijkstra(" << mVexs[vs] << "): " << endl;for (i = 0; i < mVexNum; i++)cout << "  shortest(" << mVexs[vs] << ", " << mVexs[i] << ")=" << dist[i] << endl;
}

 

3.3 迪杰斯特拉算法---Java实现

java的实现和C++实现基本上一样的了

 

4. 迪杰斯特拉算法的源码

这里分别给出"邻接矩阵图"和"邻接表图"的迪杰斯特拉算法源码。

1. 邻接矩阵源码(matrix_udg.c)

2. 邻接表源码(list_udg.c)

############################################################

参考2

Dijkstra算法

1.定义概览

Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。

问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)

2.算法描述

1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

2)算法步骤:

a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。

b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。

d.重复步骤b和c直到所有顶点都包含在S中。

 

执行动画过程如下图

 

3.算法代码实现:

const int  MAXINT = 32767;
const int MAXNUM = 10;
int dist[MAXNUM];
int prev[MAXNUM];int A[MAXUNM][MAXNUM];void Dijkstra(int v0)
{bool S[MAXNUM];                                  // 判断是否已存入该点到S集合中int n=MAXNUM;for(int i=1; i<=n; ++i){dist[i] = A[v0][i];S[i] = false;                                // 初始都未用过该点if(dist[i] == MAXINT)    prev[i] = -1;else prev[i] = v0;}dist[v0] = 0;S[v0] = true;   for(int i=2; i<=n; i++){int mindist = MAXINT;int u = v0;                               // 找出当前未使用的点j的dist[j]最小值for(int j=1; j<=n; ++j)if((!S[j]) && dist[j]<mindist){u = j;                             // u保存当前邻接点中距离最小的点的号码 mindist = dist[j];}S[u] = true; for(int j=1; j<=n; j++)if((!S[j]) && A[u][j]<MAXINT){if(dist[u] + A[u][j] < dist[j])     //在通过新加入的u点路径找到离v0点更短的路径  {dist[j] = dist[u] + A[u][j];    //更新dist prev[j] = u;                    //记录前驱顶点 }}}
}

 

4.算法实例

先给出一个无向图

用Dijkstra算法找出以A为起点的单源最短路径步骤如下

 

Floyd算法

1.定义概览

Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2)。

 

2.算法描述

1)算法思想原理:

     Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)

      从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

2).算法描述:

a.从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。   

b.对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。

3).Floyd算法过程矩阵的计算----十字交叉法

方法:两条线,从左上角开始计算一直到右下角 如下所示

给出矩阵,其中矩阵A是邻接矩阵,而矩阵Path记录u,v两点之间最短路径所必须经过的点

相应计算方法如下:

最后A3即为所求结果

 

3.算法代码实现

typedef struct          
{        char vertex[VertexNum];                                //顶点表         int edges[VertexNum][VertexNum];                       //邻接矩阵,可看做边表         int n,e;                                               //图中当前的顶点数和边数         
}MGraph; void Floyd(MGraph g)
{int A[MAXV][MAXV];int path[MAXV][MAXV];int i,j,k,n=g.n;for(i=0;i<n;i++)for(j=0;j<n;j++){   A[i][j]=g.edges[i][j];path[i][j]=-1;}for(k=0;k<n;k++){ for(i=0;i<n;i++)for(j=0;j<n;j++)if(A[i][j]>(A[i][k]+A[k][j])){A[i][j]=A[i][k]+A[k][j];path[i][j]=k;} } 
} 

算法时间复杂度:O(n3)

 

5. 转自

https://www.cnblogs.com/skywang12345/p/3711512.html

https://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html


http://chatgpt.dhexx.cn/article/bcjdpIDa.shtml

相关文章

Dijkstra 最短路径算法 Python 实现

原文链接 问题描述 使用 Dijkstra 算法求图中的任意顶点到其它顶点的最短路径&#xff08;求出需要经过那些点以及最短距离&#xff09;。 以下图为例&#xff1a; 算法思想 可以使用二维数组来存储顶点之间边的关系 首先需要用一个一维数组 dis 来存储 初始顶点到其余各个顶…

神经网络最短路径算法,最短路径算法的原理

节约里程法求解最短路问题 你只要记住2点之间直线最短。节约里程法是用来解决运输车辆数目不确定的问题的最有名的启发式算法。1、节约里程法优化过程分为并行方式和串行方式两种。 核心思想是依次将运输问题中的两个回路合并为一个回路&#xff0c;每次使合并后的总运输距离…

最短路径算法及Python实现

最短路径问题 在图论中&#xff0c;最短路径问题是指在一个有向或无向的加权图中找到从一个起点到一个终点的最短路径。这个问题是计算机科学中的一个经典问题&#xff0c;也是许多实际问题的基础&#xff0c;例如路线规划、通信网络设计和交通流量优化等。在这个问题中&#…

图论:图的四种最短路径算法

目录&#xff1a; 1.DFS&#xff08;单源最短路径算法&#xff09; 例题1&#xff1a; DFS题目分析&#xff1a; 代码DFS&#xff1a; 2.Floyed&#xff08;时间复杂度On^3&#xff09; 1.应用场景&#xff1a; 2.解析算法&#xff1a; 核心代码1&#xff1a; 我的笔…

图的五种最短路径算法

本文总结了图的几种最短路径算法的实现:深度或广度优先搜索算法,费罗伊德算法,迪杰斯特拉算法,Bellman-Ford 算法。 1)深度或广度优先搜索算法(解决单源最短路径) 从起点开始访问所有深度遍历路径或广度优先路径,则到达终点节点的路径有多条,取其中路径权值最短的一…

最短路径算法——Dijkstra算法——python3实现

本文参考来自数据结构与算法分析 java语言描述。 文章目录 问题描述问题分析实现过程如何使用数据变化表代码实现优先队列中的堆排序使用set代替优先队列得到最短路径 负权边算法改进&#xff08;若为无圈图&#xff09; 问题描述 现有一个有向赋权图。如下图所示&#xff1a;…

最短路径算法的编程与实现 C语言

一 、目的&#xff1a; 1.掌握最短路径算法的基本原理及编程实现&#xff1b; 二 、环境&#xff1a; operating system version&#xff1a;Win11 CPU instruction set: x64 Integrated Development Environment&#xff1a;Viusal Studio 2022 三 、内容&#xff1a; 1…

图的四种最短路径算法

本文总结了图的几种最短路径算法的实现&#xff1a;深度或广度优先搜索算法&#xff0c;弗洛伊德算法&#xff0c;迪杰斯特拉算法&#xff0c;Bellman-Ford算法 1&#xff09;&#xff0c;深度或广度优先搜索算法&#xff08;解决单源最短路径&#xff09; 从起始结点开始访问所…

算法之几个常见的经典最短路径算法

目录 1. Dijkstra算法2. Floyd算法3. Bellman-Ford 算法 1. Dijkstra算法 是解单源最短路径问题的贪心算法。 有一向带权图 G (V, E)&#xff0c;包含右n个顶点&#xff0c;其中每条边的权是非负实数&#xff0c;定义数组 dist 为原点到G中各个顶点的距离&#xff0c;初始化为…

最短路径的四种算法

最短路径四种算法 1234FloydDijkstraBellman-Ford队列优化的Bellman-Ford 一&#xff0c;只有四行的算法——Floyd-Warshall 假设求顶点 V i Vi Vi到 V j Vj Vj的最短路径。弗洛伊德算法依次找从 V i Vi Vi到 V j Vj Vj&#xff0c;中间经过结点序号不大于 0 0 0的最短路径&…

最短路径算法

1.最短路径算法分为单源最短路径算法和多源最短路径算法 &#xff08;a&#xff09;单源最短路径算法&#xff0c;可以计算出从起点到任意一个起点的最短路径。 例如&#xff1a;Dijkstra算法 &#xff0c;SPFA算法 &#xff08;b&#xff09;多源最短路径算法&#xff0c;可…

哈夫曼树及其应用

1、哈夫曼树的基本概念 ---- 哈夫曼&#xff08;Huffman&#xff09;树又称作最优二叉树&#xff0c;它是n个带权叶子结点构成的所有二叉树中&#xff0c;带权路径长度最小的二叉树。 ---- “路径”就是从树中的一个结点到另一个结点之间的分支构成的部分&#xff0c;而分支…

哈夫曼树的C语言实现

什么是哈夫曼树 当用 n 个结点&#xff08;都做叶子结点且都有各自的权值&#xff09;试图构建一棵树时&#xff0c;如果构建的这棵树的带权路径长度最小&#xff0c;称这棵树为“最优二叉树”&#xff0c;有时也叫“赫夫曼树”或者“哈夫曼树”。 在构建哈弗曼树时&#xff0…

哈夫曼树的构建及编码

哈夫曼树的构建及编码 文章目录 哈夫曼树的构建及编码一、什么是哈夫曼树二、什么是哈夫曼编码三、怎么建哈夫曼树、求哈夫曼编码四、为什么哈夫曼编码能实现压缩 声明&#xff1a;关于文件压缩&#xff0c;不是本文的重点&#xff0c;本文只说明并讨论哈夫曼树的构建和编码&am…

如何构建一棵哈夫曼树

给一个数列{10,7,8,3,26,5,1},要求转成为一棵哈夫曼树。 分析思路以及图解&#xff1a; 第一步&#xff1a;将数列进行排序&#xff0c;按从小到大的顺序。最终结果为{1,3,5,7,8,10,26}&#xff0c;根据每个数值创建结点&#xff0c;组成结点数组 第二步&#xff1a;取出权值最…

哈夫曼树 (100分)哈夫曼树

4-1 哈夫曼树 (100分)哈夫曼树 第一行输入一个数n&#xff0c;表示叶结点的个数。 需要用这些叶结点生成哈夫曼树&#xff0c;根据哈夫曼树的概念&#xff0c;这些结点有权值&#xff0c;即weight&#xff0c;题目需要输出哈夫曼树的带权路径长度&#xff08;WPL&#xff09;。…

哈夫曼树的编码和解码

哈夫曼树的作用&#xff1a;在数据通信中&#xff0c;需要将传送的文字转换成二进制的字符串&#xff0c;用0&#xff0c;1码的不同排列来表示字符。例如&#xff0c;需传送的报文为“AFTER DATA EAR ARE ART AREA”&#xff0c;这里用到的字符集为“A&#xff0c;E&#xff0c…

哈夫曼树与哈夫曼编码

哈夫曼树 给定n个权值作为n个叶子结点&#xff0c;构造一棵二叉树&#xff0c;若带权路径长度达到最小&#xff0c;称这样的二叉树为最优二叉树&#xff0c;也称为哈夫曼树(Huffman Tree)。哈夫曼树是带权路径长度最短的树&#xff0c;权值较大的结点离根较近。 树节点间的边…

【例题】哈夫曼树

【例1】由五个分别带权值为9&#xff0c;2&#xff0c;3&#xff0c;5&#xff0c;14的叶子结点构成的一棵哈夫曼树&#xff0c;该树的带权路径长度为_______________。 A、60 B、66 C、67 D、50 答案&#xff1a;C 解析&#xff1a; 关键点在于要学会如何构造哈夫曼树 已知有5…

哈夫曼树以及哈夫曼算法

目录 一、哈夫曼树的定义 二、哈夫曼树的特点 三、哈夫曼算法(构造哈夫曼树的方法) 四、哈夫曼树的构造过程 五、哈夫曼树构造算法的实现 一、哈夫曼树的定义 1、哈夫曼树:最优树即带权路径长度(WPL)最短的树 “带权路径长度最短”是在"度相同”的树中比较而得的结果…