二分图的最大匹配

article/2025/9/17 10:22:24

一、概念:

二分图:简单来说,如果图中点可以被分为两组,并且使得所有边都跨越组的边界,则这就是一个二分图。准确地说:把一个图的顶点划分为两个不相交集 U 和V ,使得每一条边都分别连接U、V中的顶点。如果存在这样的划分,则此图为一个二分图。二分图的一个等价定义是:不含有「含奇数条边的环」的图。图 1 是一个二分图。为了清晰,我们以后都把它画成图 2 的形式。

匹配:在图论中,一个「匹配」(matching)是一个边的集合,其中任意两条边都没有公共顶点。例如,图 3、图 4 中红色的边就是图 2 的匹配。

                                                               Bipartite Graph(1)  Bipartite Graph(2)  Matching  Maximum Matching

在图 3 中 1、4、5、7 为匹配点,其他顶点为未匹配点;1-5、4-7为匹配边,其他边为非匹配边。

最大匹配:一个图所有匹配中,所含匹配边数最多的匹配,称为这个图的最大匹配。图 4 是一个最大匹配,它包含 4 条匹配边。

完美匹配:如果一个图的某个匹配中,所有的顶点都是匹配点,那么它就是一个完美匹配。图 4 是一个完美匹配。显然,完美匹配一定是最大匹配(完美匹配的任何一个点都已经匹配,添加一条新的匹配边一定会与已有的匹配边冲突)。但并非每个图都存在完美匹配。

二、算法:

求解最大匹配问题的一个算法是匈牙利算法

5

交替路:从一个未匹配点出发,依次经过非匹配边、匹配边、非匹配边…形成的路径叫交替路。

增广路:从一个未匹配点出发,走交替路,如果途径另一个未匹配点(出发的点不算),则这条交替路称为增广路(agumenting path)。例如,图 5 中的一条增广路如图 6 所示(图中的匹配点均用红色标出):

6

增广路有一个重要特点:非匹配边比匹配边多一条。因此,研究增广路的意义是改进匹配

只要把增广路中的匹配边和非匹配边的身份交换即可。由于中间的匹配节点不存在其他相连的匹配边,所以这样做不会破坏匹配的性质。交换后,图中的匹配边数目比原来多了 1 条。

我们可以通过不停地找增广路来增加匹配中的匹配边和匹配点。找不到增广路时,达到最大匹配(这是增广路定理)。

 

给一个例子 
1、起始没有匹配 

 

 

 

2、选中第一个x点找第一跟连线 

 

 


3、选中第二个点找第二跟连线 

 

4、发现x3的第一条边x3y1已经被人占了,找出x3出发的的交错路径x3-y1-x1-y4,把交错路中已在匹配上的边x1y1从匹配中去掉,剩余的边x3y1 x1y4加到匹配中去 

 

 

 


5、同理加入x4,x5。 

匈牙利算法可以深度有限或者广度优先,刚才的示例是深度优先,即x3找y1,y1已经有匹配,则找交错路。若是广度优先,应为:x3找y1,y1有匹配,x3找y2。

 

匈牙利算法的要点如下

  1. 从左边第 1 个顶点开始,挑选未匹配点进行搜索,寻找增广路。
  2. 如果经过一个未匹配点,说明寻找成功。更新路径信息,匹配边数 +1,停止搜索。
  3. 如果一直没有找到增广路,则不再从这个点开始搜索。事实上,此时搜索后会形成一棵匈牙利树。我们可以永久性地把它从图中删去,而不影响结果。
  4. 由于找到增广路之后需要沿着路径更新匹配,所以我们需要一个结构来记录路径上的点。DFS 版本通过函数调用隐式地使用一个栈,而 BFS 版本使用 prev 数组。

补充定义和定理:

 

(1)二分图的最小顶点覆盖 

最小顶点覆盖要求用最少的点(X或Y中都行),让每条边都至少和其中一个点关联。

Knoig定理:二分图的最小顶点覆盖数等于二分图的最大匹配数。

 

(2)DAG图的最小路径覆盖 

用尽量少的不相交简单路径覆盖有向无环图(DAG)G的所有顶点,这就是DAG图的最小路径覆盖问题。

结论:DAG图的最小路径覆盖数 = 节点数(n)- 最大匹配数(m)

 

(3)二分图的最大独立集

最大独立集问题: 在N个点的图G中选出m个点,使这m个点两两之间没有边.求m最大值

结论:二分图的最大独立集数 = 节点数(n)— 最大匹配数(m)

 

三、代码

/*HDU2063*/
#include<stdio.h>
#include<string.h>
using namespace std;
const int maxn = 505;int map[maxn][maxn];//关系图。//这里我们用1表示有关系0表示没有关系
int vis[maxn];//表示是否询问过这个人 用1表示询问过 0表示没有询问过
int match[maxn];//数组内数据表示匹配关系:比如match[1]=2表示男1和女2约上了(不一定最后也是在一起的)
int k,m,n;int  find(int x)//这里x表示是任何一个女生
{for(int i=1; i<=n; i++) //这里的i表示男生
    {if(vis[i]==0&&map[x][i]==1)//如果这个男生没有询问过,并且你和这个男生认识
        {vis[i]=1;//标记询问过了if(match[i]==-1||find(match[i]))//如果当前女孩纸是来直接找约会对象的,或者是要抛弃当前男孩去找下一个男孩的(而且找到了)。
            {match[i]=x;//当前男生和女生约上了(i男x女)return 1;//返回找到了
            }}}return 0;
}int hungary()
{memset (match,-1,sizeof (match));int output=0;for(int i=1; i<=m; i++){memset(vis,0,sizeof(vis));if(find(i))output++;}return output;
}int main()
{while(~scanf("%d",&k)){if(k==0)break;scanf ("%d%d",&m,&n);memset (map,0,sizeof(map));for(int i=0; i<k; i++){int a,b;scanf("%d%d",&a,&b);map[a][b]=1;}printf("%d\n",hungary());}
}

转载于:https://www.cnblogs.com/aiguona/p/7665946.html


http://chatgpt.dhexx.cn/article/0GD5e3Fc.shtml

相关文章

二分图最大匹配问题

最近在做的打车项目中&#xff0c;涉及到了用户叫单后&#xff0c;将所有出单司机和所有订单匹配的问题&#xff0c;借此来学习一下二分图的匹配算法。 一、无权二分图最大匹配 首先要区分一下各个概念&#xff1a; 匹配&#xff1a;图G的一个匹配是由一组没有公共端点的不是…

二分图最大匹配——匈牙利算法

二分图最大匹配 &#xff08;一&#xff09;、二分图的介绍1、定义2、充要条件 &#xff08;二&#xff09;、二分图的匹配1、二分图的最大匹配2、增广路径3、匈牙利算法&#xff08;1&#xff09;、复杂度&#xff08;2&#xff09;、算法思路&#xff08;3&#xff09;、代码…

B树最小高度和最大高度的推导

B树最小高度和最大高度的推导 对任意一棵包含n个关键字&#xff0c;高度为h&#xff0c;阶数为m的B树&#xff0c;其最小高度和最大高度的推导过程如下&#xff1a;

算法篇:树之树的高度

算法&#xff1a; 这一类题目很简单&#xff0c;不过却是树的最基本操作之一&#xff0c;引申为判断树是不是平衡二叉树。 一般做法是&#xff0c;计算二叉树的左右子树的高度1&#xff0c;然后取它们的最大值或者最小值。 题目1: https://leetcode-cn.com/problems/balanced-b…

【二叉树】最小高度树

0x00 题目 给定一个 有序 整数数组 元素各不相同且按 升序 排列 编写一个算法&#xff0c;创建一棵 高度最小 的二叉 搜索 树 给定有序数组: [-10,-3,0,5,9] 一个可能的答案是&#xff1a;[0,-3,9,-10,null,5] 它可以表示下面这个高度平衡二叉搜索树&#xff1a; 0 / \ -3 …

常见数据结构详细图解、树的高度、深度、层数、跳表、二叉搜索树、平衡二叉树、红黑树、B树、B+树

常见数据结构 常用的数据结构知识。 1.1 跳表 上图是一个有序链表&#xff0c;我们要检索一个数据就挨个遍历。如果想要再提升查询效率&#xff0c;可以变种为以下结构&#xff1a; 现在&#xff0c;我们要查询11&#xff0c;可以跳着来查询&#xff0c;从而加快查询速度。 …

树的高度 递归法和非递归法

递归法思路&#xff1a; 树的高度即节点子树的高度1&#xff08;节点子树的高度即左子树高度&#xff0c;右子树高度的最大值&#xff09; 代码如下&#xff1a; // Height_Recursive 递归法求树的高度 int Height_Recursive(TreeNode* pTree) {if (pTree NULL) {return 0;…

获取树高度的两种方法与完全二叉树的判断

树的高度 树的高度是节点高度的最大值。 每一层节点的高度如图所示。 方法一&#xff1a;递归 根节点的高度显然就是二叉树的高度。 /** * 获取树的高度* return*/ public int height(){return height2(root); }/*** 使用递归方法获取树的高度* param node* return*/ priv…

红黑树

一.简介 红黑树作为一种二叉搜索树的一种实现&#xff0c;红黑树的左右子树高度差可能大于 1。所以红黑树不是严格意义上的平衡二叉树&#xff08;AVL&#xff09;&#xff0c;但红黑树是黑色节点完美平衡&#xff0c; 其平均统计性能要强于 AVL 。 红黑树是每个节点都带有颜…

B树最大高度推导

文章目录 B树最大高度推导推导B树的最小高度推导最大高度 B树&#xff1a;MySQL数据库索引是如何实现的&#xff1f;1. 遇到问题2. 尝试用学过的数据结构解决这个问题3. 改造二叉查找树4. 索引的弊端 B树最大高度推导 【声明几个重要概念】 B树的关键字就是要查找的东西 B树…

红黑树详解

1&#xff0c;红黑树特点 每一个结点都有颜色&#xff0c;要么红色&#xff0c;要么黑色。根结点必须是黑色的。红色结点的子结点必须是黑色的。任何一个结点&#xff0c;到它所有叶子结点&#xff0c;经过相同个数的黑色结点。&#xff08;红黑树的平衡含义&#xff0c;左右高…

MYSQL的B+Tree索引树高度如何计算

我们使用MySQL数据库的时候&#xff0c;绝大部分的情况下在使用InnoDB存储引擎&#xff0c;偶尔会使用MyISAM存储引擎&#xff0c;至于其他存储引擎&#xff0c;我相信大家都很少接触到&#xff0c;甚至可能都没有听说过。所以本文只讲解InnoDB和MyISAM两个存储引擎的索引&…

红黑树高度上限的证明(通俗易懂)

先把结论放上&#xff0c;设红黑树的高度为h&#xff0c;总结点数为n&#xff0c;那么h与n的关系就是 下面开始证明过程 首先&#xff0c;从任意节点出发&#xff0c;到其子树的叶子节点的路径中黑色节点的数量称为该节点的黑高&#xff0c;即 bh 我们设根节点为T,那么根节点…

数据结构与算法(一): 树的高度和深度的区别

1.高度 对于高度的理解&#xff0c;我们不管他数据结构什么什么知识&#xff0c;就拿楼房来说&#xff0c;假如一个人提问&#xff1a;楼房的高度有好高&#xff1f;我们会下意识的从底层开始往上数&#xff0c;假如楼有6层&#xff0c;则我们会说&#xff0c;这个楼有6层楼那…

经典PID算法

首先感谢黄工&#xff0c;公众号strongerHuang&#xff0c;以下为三篇文章整合而成。 文章链接&#xff1a; https://mp.weixin.qq.com/s/6Ew431m4nXhScpNVp8mGxQ https://mp.weixin.qq.com/s/JYWnu67HEx2uMrntcUhggQ https://mp.weixin.qq.com/s/IrTehHvTofXWP_BapoN1NQ 在工…

PID控制原理

PID控制原理 在模拟控制系统中,控制器最常用的控制规律是PID控制。 PID控制器是一种线性控制器,它根据给定值与实际输出值构成控制偏差。 PID控制规律为 数学表达形式为: 进行拉普拉斯变换,写出传递函数的形式: kp为比例系数,T1为积分时间常数,Td为微分时间常数。…

SMART PLC PID算法基本解析(附公式)

在稳态运行中,控制器调节输出值,使偏差 (e) 为零。偏差是设定值(目标值)与过程变量(实际值、反馈值)之差。输出 = 比例项 + 积分项 + 微分项 离散化的PID公式基本框架几乎一样,不同的厂家描述符号,变量名称定义可能不太一样, 从公式中可以看出,积分项是从第一次采样到…

PID算法-理论分析

连续PID算法 典型PID算法框图 r(t)&#xff1a;设定状态量y(t)&#xff1a;实际状态量e(t)&#xff1a;当前误差u(t)&#xff1a;控制 器输出 P-比例环节 u p ( t ) K p ∗ e ( t ) K p [ r ( t ) − y ( t ) ] u_{p}(t)Kp*e(t)Kp[r(t)-y(t)] up​(t)Kp∗e(t)Kp[r(t)−y(t)…

PID详解

PID在控制领域应该是应用最为广泛的算法了&#xff0c;在工业控制&#xff0c;汽车电子等诸多领域中运用 下面我用一个例子和算法过程来讲解PID的概念 PID&#xff1a; P比例控制&#xff1a;基本作用就是控制对象以线性的方式增加&#xff0c;在一个常量比例下&#xff0c;动态…

模糊PID算法

在讲解模糊PID前&#xff0c;我们先要了解PID控制器的原理&#xff08;本文主要介绍模糊PID的运用,对PID控制器的原理不做详细介绍&#xff09;。PID控制器&#xff08;比例-积分-微分控制器&#xff09;是一个在工业控制应用中常见的反馈回路部件&#xff0c;由比例单元P、积分…