impala与hive的比较以及impala的有缺点

article/2025/9/21 6:21:02

     最近读的几篇关于impala的文章,这篇良心不错:https://www.biaodianfu.com/impala.html(本文截取部分内容)

        Impala是Cloudera公司主导开发的新型查询系统,它提供SQL语义,能查询存储在Hadoop的HDFS和HBase中的PB级大数据。已有的Hive系统虽然也提供了SQL语义,但由于Hive底层执行使用的是MapReduce引擎,仍然是一个批处理过程,难以满足查询的交互性。相比之下,Impala的最大特点也是最大卖点就是它的快速。    

Impala相对于Hive所使用的优化技术

  • 没有使用MapReduce进行并行计算,虽然MapReduce是非常好的并行计算框架,但它更多的面向批处理模式,而不是面向交互式的SQL执行。与MapReduce相比:Impala把整个查询分成一执行计划树,而不是一连串的MapReduce任务,在分发执行计划后,Impala使用拉式获取数据的方式获取结果,把结果数据组成按执行树流式传递汇集,减少了把中间结果写入磁盘的步骤,再从磁盘读取数据的开销。Impala使用服务的方式避免每次执行查询都需要启动的开销,即相比Hive没了MapReduce启动时间。
  • 使用LLVM产生运行代码,针对特定查询生成特定代码,同时使用Inline的方式减少函数调用的开销,加快执行效率。
  • 充分利用可用的硬件指令(2)。
  • 更好的IO调度,Impala知道数据块所在的磁盘位置能够更好的利用多磁盘的优势,同时Impala支持直接数据块读取和本地代码计算checksum。
  • 通过选择合适的数据存储格式可以得到最好的性能(Impala支持多种存储格式)。
  • 最大使用内存,中间结果不写磁盘,及时通过网络以stream的方式传递。

Impala与Hive的异同

相同点:

  • 数据存储:使用相同的存储数据池都支持把数据存储于HDFS, HBase。
  • 元数据:两者使用相同的元数据。
  • SQL解释处理:比较相似都是通过词法分析生成执行计划。

不同点:

执行计划:

  • Hive: 依赖于MapReduce执行框架,执行计划分成map->shuffle->reduce->map->shuffle->reduce…的模型。如果一个Query会被编译成多轮MapReduce,则会有更多的写中间结果。由于MapReduce执行框架本身的特点,过多的中间过程会增加整个Query的执行时间。
  • Impala: 把执行计划表现为一棵完整的执行计划树,可以更自然地分发执行计划到各个Impalad执行查询,而不用像Hive那样把它组合成管道型的map->reduce模式,以此保证Impala有更好的并发性和避免不必要的中间sort与shuffle。

数据流:

  • Hive: 采用推的方式,每一个计算节点计算完成后将数据主动推给后续节点。
  • Impala: 采用拉的方式,后续节点通过getNext主动向前面节点要数据,以此方式数据可以流式的返回给客户端,且只要有1条数据被处理完,就可以立即展现出来,而不用等到全部处理完成,更符合SQL交互式查询使用。

内存使用:

  • Hive: 在执行过程中如果内存放不下所有数据,则会使用外存,以保证Query能顺序执行完。每一轮MapReduce结束,中间结果也会写入HDFS中,同样由于MapReduce执行架构的特性,shuffle过程也会有写本地磁盘的操作。
  • Impala: 在遇到内存放不下数据时,当前版本0.1是直接返回错误,而不会利用外存,以后版本应该会进行改进。这使用得Impala目前处理Query会受到一定的限制,最好还是与Hive配合使用。Impala在多个阶段之间利用网络传输数据,在执行过程不会有写磁盘的操作(insert除外)。

调度:

  • Hive: 任务调度依赖于Hadoop的调度策略。
  • Impala: 调度由自己完成,目前只有一种调度器simple-schedule,它会尽量满足数据的局部性,扫描数据的进程尽量靠近数据本身所在的物理机器。调度器目前还比较简单,在SimpleScheduler::GetBackend中可以看到,现在还没有考虑负载,网络IO状况等因素进行调度。但目前Impala已经有对执行过程的性能统计分析,应该以后版本会利用这些统计信息进行调度吧。

容错:

  • Hive: 依赖于Hadoop的容错能力。
  • Impala: 在查询过程中,没有容错逻辑,如果在执行过程中发生故障,则直接返回错误(这与Impala的设计有关,因为Impala定位于实时查询,一次查询失败,再查一次就好了,再查一次的成本很低)。但从整体来看,Impala是能很好的容错,所有的Impalad是对等的结构,用户可以向任何一个Impalad提交查询,如果一个Impalad失效,其上正在运行的所有Query都将失败,但用户可以重新提交查询由其它Impalad代替执行,不会影响服务。对于State Store目前只有一个,但当State Store失效,也不会影响服务,每个Impalad都缓存了State Store的信息,只是不能再更新集群状态,有可能会把执行任务分配给已经失效的Impalad执行,导致本次Query失败。

适用面:

  • Hive: 复杂的批处理查询任务,数据转换任务。
  • Impala:实时数据分析,因为不支持UDF,能处理的问题域有一定的限制,与Hive配合使用,对Hive的结果数据集进行实时分析。

Impala的优缺点

优点:

  • 支持SQL查询,快速查询大数据。
  • 可以对已有数据进行查询,减少数据的加载,转换。
  • 多种存储格式可以选择(Parquet, Text, Avro, RCFile, SequeenceFile)。
  • 可以与Hive配合使用。

缺点:

  • 不支持用户定义函数UDF。
  • 不支持text域的全文搜索。
  • 不支持Transforms。
  • 不支持查询期的容错。
  • 对内存要求高。

在Cloudera的测试中,Impala的查询效率比Hive有数量级的提升。从技术角度上来看,Impala之所以能有好的性能,主要有以下几方面的原因。

  • Impala不需要把中间结果写入磁盘,省掉了大量的I/O开销。
  • 省掉了MapReduce作业启动的开销。MapReduce启动task的速度很慢(默认每个心跳间隔是3秒钟),Impala直接通过相应的服务进程来进行作业调度,速度快了很多。
  • Impala完全抛弃了MapReduce这个不太适合做SQL查询的范式,而是像Dremel一样借鉴了MPP并行数据库的思想另起炉灶,因此可做更多的查询优化,从而省掉不必要的shuffle、sort等开销。
  • 通过使用LLVM来统一编译运行时代码,避免了为支持通用编译而带来的不必要开销。
  • 用C++实现,做了很多有针对性的硬件优化,例如使用SSE指令。
  • 使用了支持Data locality的I/O调度机制,尽可能地将数据和计算分配在同一台机器上进行,减少了网络开销。

虽然Impala是参照Dremel来实现的,但它也有一些自己的特色,例如Impala不仅支持Parquet格式,同时也可以直接处理文本、SequenceFile等Hadoop中常用的文件格式。另外一个更关键的地方在于,Impala是开源的,再加上Cloudera在Hadoop领域的领导地位,其生态圈有很大可能会在将来快速成长。

Impala与Shark,Drill等的比较

开源组织Apache也发起了名为Drill的项目来实现Hadoop上的Dremel,目前该项目正在开发当中,相关的文档和代码还不多,可以说暂时还未对Impala构成足够的威胁。从Quora上的问答来看,Cloudera有7-8名工程师全职在Impala项目上,而相比之下Drill目前的动作稍显迟钝。具体来说,截止到2012年10月底,Drill的代码库里实现了query parser, plan parser,及能对JSON格式的数据进行扫描的plan evaluator;而Impala同期已经有了一个比较完毕的分布式query execution引擎,并对HDFS和HBase上的数据读入,错误检测,INSERT的数据修改,LLVM动态翻译等都提供了支持。当然,Drill作为Apache的项目,从一开始就避免了某个vendor的一家独大,而且对所有Hadoop流行的发行版都会做相应的支持,不像Impala只支持Cloudera自己的发行版CDH。从长远来看,谁会占据上风还真不一定。

除此之外,加州伯克利大学AMPLab也开发了名为Shark的大数据分析系统。从长远目标来看,Shark想成为一个既支持大数据SQL查询,又能支持高级数据分析任务的一体化数据处理系统。从技术实现的角度上来看,Shark基于Scala语言的算子推导实现了良好的容错机制,因此对失败了的长任务和短任务都能从上一个“快照点”进行快速恢复。相比之下,Impala由于缺失足够强大的容错机制,其上运行的任务一旦失败就必须“从头来过”,这样的设计必然会在性能上有所缺失。而且Shark是把内存当作第一类的存储介质来做的系统设计,所以在处理速度上也会有一些优势。实际上,AMPLab最近对Hive,Impala,Shark及Amazon采用的商业MPP数据库Redshift进行了一次对比试验,在Scan Query,Aggregation Query和Join Query三种类型的任务中对它们进行了比较。图2就是AMPLab报告中Aggregation Query的性能对比。在图中我们可以看到,商业版本的Redshift的性能是最好的, Impala和Shark则各有胜负,且两者都比Hive的性能高出了一大截。

impala-drill

其实对大数据分析的项目来说,技术往往不是最关键的。例如Hadoop中的MapReduce和HDFS都是源于Google,原创性较少。事实上,开源项目的生态圈,社区,发展速度等,往往在很大程度上会影响Impala和Shark等开源大数据分析系统的发展。就像Cloudera一开始就决定会把Impala开源,以期望利用开源社区的力量来推广这个产品;Shark也是一开始就开源了出来,更不用说Apache的Drill更是如此。说到底还是谁的生态系统更强的问题。技术上一时的领先并不足以保证项目的最终成功。虽然最后那一款产品会成为事实上的标准还很难说,但是,我们唯一可以确定并坚信的一点是,大数据分析将随着新技术的不断推陈出新而不断普及开来,这对用户永远都是一件幸事。举个例子,如果读者注意过下一代Hadoop(YARN)的发展的话就会发现,其实YARN已经支持MapReduce之外的计算范式(例如Shark,Impala等),因此将来Hadoop将可能作为一个兼容并包的大平台存在,在其上提供各种各样的数据处理技术,有应对秒量级查询的,有应对大数据批处理的,各种功能应有尽有,满足用户各方面的需求。



http://chatgpt.dhexx.cn/article/eYUJq7wR.shtml

相关文章

impala命令

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 impala 前言一、impala是什么 ?二、使用步骤1.数据拼接2.exists()cast()regexp_like()nvl() 前言 提示:这里可以添加本文要记录的大概内容&#xff1…

Apache Impala(1):Impala简介

1 Impala 基本介绍 impala 是 cloudera 提供的一款高效率的 sql 查询工具,提供实时的查询效果,官方测试性能比 hive 快 10 到 100 倍,其 sql 查询比 sparkSQL 还要更加快速,号称是当前大数据领域最快的查询 sql 工具&#xff0c…

大数据Impala系列之初识Impala

一、impala 概述 1、什么是Impala? Impala是用于处理存储在Hadoop集群中的大量数据的MPP(大规模并行处理)SQL查询引擎。 它是一个用C 和Java编写的开源软件。 与其他Hadoop的SQL引擎相比,它提供了高性能和低延迟。 2、为什么选…

Impala 安装部署

文章目录 1. 安装前提2. 下载安装包,依赖包3. 虚拟机新增磁盘 (磁盘空间有余则跳过此步骤)3.1 关机新增磁盘3.2 开机挂载磁盘 4. 配置本地 yum 源4.1 上传安装包解压4.2 配置本地yum源信息 5. 安装Impala5.1 集群规划5.2 主节点安装5.3 从节点…

Apache Impala : Impala安装部署

Impala Impala安装部署安装前提下载安装包、依赖包虚拟机新增磁盘(可选)关机新增磁盘开机挂载磁盘 配置本地yum源上传安装包解压配置本地yum源信息 安装Impala集群规划主节点安装从节点安装 修改Hadoop、Hive配置修改hive配置修改hadoop配置复制hadoop、…

Impala的使用

Impala的核心开发语言是sql语句,Impala有shell命令行窗口,以及JDBC等方式来接收sql语句执行, 对于复杂类型分析可以使用C或者Java来编写UDF函数。 Impala的sql语法是高度集成了Apache Hive的sql语法,Impala支持Hive支持的数据类型…

impala shell

目录 一、impala shell内部命令 1.进入impala交互命令行 2.内部命令(同sql操作类似) 3.退出impala 4.连接到指定的机器impalad上去执行 5.增量刷新 6.全量刷新 7.帮助 8.查看sql语句的执行计划 9.打印出更加详细的执行步骤 10.设置显示级别&am…

Impala的简单入门

一、Impala概述 什么是Impala? Impala是用于处理存储在Hadoop集群中的大量数据的MPP(大规模并行处理)SQL查询引擎。 它是一个用C 和Java编写的开源软件。 与其他Hadoop的SQL引擎相比,它提供了高性能和低延迟。 换句话说&#x…

Impala 介绍

文章目录 1. Impala基本介绍2. Impala与Hive关系3. Impala与Hive异同3.1 Impala使用的优化技术3.2 执行计划3.3 数据流3.4 内存使用3.5 调度3.6 容错3.7 适用面 4. Impala架构4.1 Impalad4.2 Impala State Store4.3 CLI4.4 Catalogd(目录) 5. Impala查询…

Impala 安装

1、集群准备 1.1、安装Hadoop,Hive Impala的安装需要提前装好Hadoop,Hive这两个框架hive需要在所有的Impala安装的节点上面都要有,因为Impala需要引用Hive的依赖包hadoop的框架需要支持C程序访问接口,查看下图,如果有该路径有.s…

impala详解

0 简介 Impala是Cloudera公司主导开发的新型查询系统,它提供SQL语义,能查询存储在Hadoop的HDFS和**HBase**中的PB级大数据。已有的Hive系统虽然也提供了SQL语义,但由于Hive底层执行使用的是MapReduce引擎,仍然是一个批处理过程&a…

Impala基础知识

概述 Impala是由Cloudera公司开发的新型查询系统,参照Dremel系统进行设计的。提供SQL语义,能查询存储在Hadoop的HDFS和HBase上的PB级大数据,在性能上比Hive高出3~30倍。 基于Hive的大数据实时分析查询引擎,其运行需要依赖于Hive…

大数据之 impala教程

一、什么是Impala? Impala是用于处理存储在Hadoop集群中的大量数据的MPP(大规模并行处理)SQL查询引擎。 它是一个用C 和Java编写的开源软件。 与其他Hadoop的SQL引擎相比,它提供了高性能和低延迟。 换句话说,Impala是…

impala入门(一篇就够了)

文章目录 01 引言02 impala概述2.1 简介2.2 架构2.2.1 Impalad(守护进程)2.2.2 Statestore(存储状态)2.2.3 metadata(元数据)/metastore(元存储) 03 impala 安装04 impala 接口05 im…

大数据——Impala工具使用

目录 一、Impala概述 二、Impala优点 三、Impala和Hive 3.1 Impala和Hive的关系 3.2 Impala和Hive的区别 五、Impala查询过程 六、Impala安装 七、impala-shell命令 八、数据库语句 数据库命令 数据表命令 视图操作 Impala数据导入 刷新Impala数据 九、Java API 一…

近端策略优化算法PPO

本文介绍近端策略优化算法(Proximal Policy Optimization)也就是PPO。 文章目录 前言一、on-policy和off-policy1.1 on-policy和off-policy的概念1.2 Importance Sampling的概念 二、TRPO、PPO算法2.1 Trust Region Algorithms2.2 Stochastic Gradient A…

【强化学习】PPO算法求解倒立摆问题 + Pytorch代码实战

文章目录 一、倒立摆问题介绍二、PPO算法简介三、详细资料四、Python代码实战4.1 运行前配置4.2 主要代码4.3 运行结果展示4.4 关于可视化的设置 一、倒立摆问题介绍 Agent 必须在两个动作之间做出决定 - 向左或向右移动推车 - 以使连接到它的杆保持直立。 二、PPO算法简介 …

强化学习之PPO

阅读本文前先了解TRPO算法有助于理解,我对此也写过博客:https://blog.csdn.net/tianjuewudi/article/details/120191097 参考李宏毅老师的视频:https://www.bilibili.com/video/BV1Wv411h7kN?p80 PPO,全名Proximal Policy Opti…

【强化学习】PPO:从On-policy到Off-policy(PPO/TRPO/PPO-Penalty/PPO-Clip)

目录 一、为什么要从On- Policy到Off-Policy?二、如何从On- Policy到Off-Policy?三、如何使 p θ ( a t ∣ s t ) p_\theta(a_t|s_t) pθ​(at​∣st​)和 p θ ′ ( a t ∣ s t ) p_{\theta}(a_t|s_t) pθ′​(at​∣st​)不相差太多?3.1 PP…

如何理解PPO算法的核心操作clip

回顾 传统的策略梯度算法以下式作为策略网络的损失: g ^ E ^ t [ ∇ θ log ⁡ π θ ( a t ∣ s t ) A ^ t ] \hat{g}\hat{\mathbb{E}}_{t}\left[\nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right) \hat{A}_{t}\right] g^​E^t​[∇θ​logπθ​…