Impala 介绍

article/2025/9/21 7:01:08

文章目录

  • 1. Impala基本介绍
  • 2. Impala与Hive关系
  • 3. Impala与Hive异同
    • 3.1 Impala使用的优化技术
    • 3.2 执行计划
    • 3.3 数据流
    • 3.4 内存使用
    • 3.5 调度
    • 3.6 容错
    • 3.7 适用面
  • 4. Impala架构
    • 4.1 Impalad
    • 4.2 Impala State Store
    • 4.3 CLI
    • 4.4 Catalogd(目录)
  • 5. Impala查询处理过程

1. Impala基本介绍

介绍 :
  impala是cloudera提供的一款高效率的sql查询工具,提供实时的查询效果,官方测试性能比hive快10到100倍,其sql查询比sparkSQL还要更加快速,号称是当前大数据领域最快的查询sql工具,
  impala是参照谷歌的新三篇论文(Caffeine–网络搜索引擎、Pregel–分布式图计算、Dremel–交互式分析工具)当中的Dremel实现而来,其中旧三篇论文分别是(BigTable,GFS,MapReduce)分别对应我们即将学的HBase和已经学过的HDFS以及MapReduce。
  impala是基于hive并使用内存进行计算,兼顾数据仓库,具有实时,批处理,多并发等优点。

在这里插入图片描述

2. Impala与Hive关系

关系 :
  impala是基于hive的大数据分析查询引擎,直接使用hive的元数据库metadata,意味着impala元数据都存储在hive的metastore当中,并且impala兼容hive的绝大多数sql语法。所以需要安装impala的话,必须先安装hive,保证hive安装成功,并且还需要启动hive的metastore服务
  Hive元数据包含用Hive创建的database、table等元信息。元数据存储在关系型数据库中,如Derby、MySQL等。
  客户端连接metastore服务,metastore再去连接MySQL数据库来存取元数据。有了metastore服务,就可以有多个客户端同时连接,而且这些客户端不需要知道MySQL数据库的用户名和密码,只需要连接metastore 服务即可。
  nohup hive --service metastore >> ~/metastore.log 2>&1 &

在这里插入图片描述

Hive适合于长时间的批处理查询分析,而Impala适合于实时交互式SQL查询。可以先使用hive进行数据转换处理,之后使用Impala在Hive处理后的结果数据集上进行快速的数据分析。

3. Impala与Hive异同

Impala
   Impala与Hive都是构建在Hadoop之上的数据查询工具各有不同的侧重适应面,但从客户端使用来看Impala与Hive有很多的共同之处,如数据表元数据、ODBC/JDBC驱动、SQL语法、灵活的文件格式、存储资源池等。
  但是Impala跟Hive最大的优化区别在于:没有使用MapReduce进行并行计算,虽然MapReduce是非常好的并行计算框架,但它更多的面向批处理模式,而不是面向交互式的SQL执行。与 MapReduce相比,Impala把整个查询分成一执行计划树,而不是一连串的MapReduce任务,在分发执行计划后,Impala使用拉式获取数据的方式获取结果,把结果数据组成按执行树流式传递汇集,减少的了把中间结果写入磁盘的步骤,再从磁盘读取数据的开销。Impala使用服务的方式避免每次执行查询都需要启动的开销,即相比Hive没了MapReduce启动时间。

在这里插入图片描述

3.1 Impala使用的优化技术

简介:
  使用LLVM产生运行代码,针对特定查询生成特定代码,同时使用Inline的方式减少函数调用的开销,加快执行效率。(C++特性)
  充分利用可用的硬件指令(SSE4.2)。
  更好的IO调度,Impala知道数据块所在的磁盘位置能够更好的利用多磁盘的优势,同时Impala支持直接数据块读取和本地代码计算checksum。
  通过选择合适数据存储格式可以得到最好性能(Impala支持多种存储格式)。
  最大使用内存,中间结果不写磁盘,及时通过网络以stream的方式传递。

3.2 执行计划

计划 :
  Hive: 依赖于MapReduce执行框架,执行计划分成 map->shuffle->reduce->map->shuffle->reduce…的模型。如果一个Query会被编译成多轮MapReduce,则会有更多的写中间结果。由于MapReduce执行框架本身的特点,过多的中间过程会增加整个Query的执行时间。
Impala:把执行计划表现为一棵完整的执行计划树,可以更自然地分发执行计划到各个Impalad执行查询,而不用像Hive那样把它组合成管道型的 map->reduce模式,以此保证Impala有更好的并发性和避免不必要的中间sort与shuffle。

3.3 数据流

数据流 :
  Hive: 采用推的方式,每一个计算节点计算完成后将数据主动推给后续节点。
  Impala:采用拉的方式,后续节点通过getNext主动向前面节点要数据,以此方式数据可以流式的返回给客户端,且只要有1条数据被处理完,就可以立即展现出来,而不用等到全部处理完成,更符合SQL交互式查询使用。

3.4 内存使用

内存使用 :
   Hive: 在执行过程中如果内存放不下所有数据,则会使用外存,以保证Query能顺序执行完。每一轮MapReduce结束,中间结果也会写入HDFS中,同样由于MapReduce执行架构的特性,shuffle过程也会有写本地磁盘的操作。
   Impala:在遇到内存放不下数据时,版本1.0.1是直接返回错误,而不会利用外存,以后版本应该会进行改进。这使用得Impala目前处理Query会受到一定的限制,最好还是与Hive配合使用。

3.5 调度

调度 :
  Hive: 任务调度依赖于Hadoop的调度策略。
  Impala: 调度由自己完成,目前只有一种调度器simple-schedule,它会尽量满足数据的局部性,扫描数据的进程尽量靠近数据本身所在的物理机器。调度器目前还比较简单,在SimpleScheduler::GetBackend中可以看到,现在还没有考虑负载,网络IO状况等因素进行调度。但目前Impala已经有对执行过程的性能统计分析,应该以后版本会利用这些统计信息进行调度吧。

3.6 容错

容错 :
   Hive: 依赖于Hadoop的容错能力。
  Impala:在查询过程中,没有容错逻辑,如果在执行过程中发生故障,则直接返回错误(这与Impala的设计有关,因为Impala定位于实时查询,一次查询失败,再查一次就好了,再查一次的成本很低)。

3.7 适用面

适用面 :
  Hive: 复杂的批处理查询任务,数据转换任务。
  Impala实时数据分析,因为不支持UDF,能处理的问题域有一定的限制,与Hive配合使用,对Hive的结果数据集进行实时分析。

4. Impala架构

Impala主要由ImpaladState StoreCatalogdCLI组成。
在这里插入图片描述

4.1 Impalad

Impalad :
   Impalad: 与DataNode运行在同一节点上,由Impalad进程表示,它接收客户端的查询请求(接收查询请求的Impalad为Coordinator,Coordinator通过JNI调用java前端解释SQL查询语句,生成查询计划树,再通过调度器把执行计划分发给具有相应数据的其它Impalad进行执行),读写数据并行执行查询,并把结果通过网络流式的传送回给Coordinator,由Coordinator返回给客户端。同时Impalad也与State Store保持连接,用于确定哪个Impalad是健康和可以接受新的工作。
  在Impalad中启动三个ThriftServer: beeswax_server(连接客户端),hs2_server(借用Hive元数据), be_server(Impalad内部使用)和一个ImpalaServer服务。

4.2 Impala State Store

Impala State Store:
   Impala State Store:跟踪集群中的Impalad的健康状态及位置信息由statestored进程表示,它通过创建多个线程来处理Impalad的注册订阅和与各Impalad保持心跳连接,各Impalad都会缓存一份State Store中的信息,当State Store离线后(Impalad发现State Store处于离线时,会进入recovery模式,反复注册,当State Store重新加入集群后,自动恢复正常,更新缓存数据)因为Impalad有State Store的缓存仍然可以工作,但会因为有些Impalad失效了,而已缓存数据无法更新,导致把执行计划分配给了失效的Impalad,导致查询失败。

4.3 CLI

CLI: 提供给用户查询使用的命令行工具(Impala Shell使用python实现),同时Impala还提供了Hue,JDBC,ODBC使用接口。

4.4 Catalogd(目录)

Catalogd:作为metadata访问网关,从Hive Metastore等外部catalog中获取元数据信息,放到impala自己的catalog结构中。impalad执行ddl命令时通过catalogd由其代为执行,该更新则由statestored广播。

5. Impala查询处理过程

Impalad分为Java前端C++处理后端,接受客户端连接的Impalad即作为这次查询的Coordinator,Coordinator通过JNI调用Java前端对用户的查询SQL进行分析生成执行计划树。

在这里插入图片描述


  Java前端产生的执行计划树以Thrift数据格式返回给C++后端(Coordinator)(执行计划分为多个阶段,每一个阶段叫做一个PlanFragment,每一个PlanFragment在执行时可以由多个Impalad实例并行执行(有些PlanFragment只能由一个Impalad实例执行,如聚合操作),整个执行计划为一执行计划树)。
  Coordinator根据执行计划,数据存储信息(Impala通过libhdfs与HDFS进行交互。通过hdfsGetHosts方法获得文件数据块所在节点的位置信息),通过调度器(现在只有simple-scheduler,使用round-robin算法)Coordinator::Exec对生成的执行计划树分配给相应的后端执行器Impalad执行(查询会使用LLVM进行代码生成,编译,执行),通过调用GetNext()方法获取计算结果。
  如果是insert语句,则将计算结果通过libhdfs写回HDFS当所有输入数据被消耗光,执行结束,之后注销此次查询服务。


http://chatgpt.dhexx.cn/article/wgtprarO.shtml

相关文章

Impala 安装

1、集群准备 1.1、安装Hadoop,Hive Impala的安装需要提前装好Hadoop,Hive这两个框架hive需要在所有的Impala安装的节点上面都要有,因为Impala需要引用Hive的依赖包hadoop的框架需要支持C程序访问接口,查看下图,如果有该路径有.s…

impala详解

0 简介 Impala是Cloudera公司主导开发的新型查询系统,它提供SQL语义,能查询存储在Hadoop的HDFS和**HBase**中的PB级大数据。已有的Hive系统虽然也提供了SQL语义,但由于Hive底层执行使用的是MapReduce引擎,仍然是一个批处理过程&a…

Impala基础知识

概述 Impala是由Cloudera公司开发的新型查询系统,参照Dremel系统进行设计的。提供SQL语义,能查询存储在Hadoop的HDFS和HBase上的PB级大数据,在性能上比Hive高出3~30倍。 基于Hive的大数据实时分析查询引擎,其运行需要依赖于Hive…

大数据之 impala教程

一、什么是Impala? Impala是用于处理存储在Hadoop集群中的大量数据的MPP(大规模并行处理)SQL查询引擎。 它是一个用C 和Java编写的开源软件。 与其他Hadoop的SQL引擎相比,它提供了高性能和低延迟。 换句话说,Impala是…

impala入门(一篇就够了)

文章目录 01 引言02 impala概述2.1 简介2.2 架构2.2.1 Impalad(守护进程)2.2.2 Statestore(存储状态)2.2.3 metadata(元数据)/metastore(元存储) 03 impala 安装04 impala 接口05 im…

大数据——Impala工具使用

目录 一、Impala概述 二、Impala优点 三、Impala和Hive 3.1 Impala和Hive的关系 3.2 Impala和Hive的区别 五、Impala查询过程 六、Impala安装 七、impala-shell命令 八、数据库语句 数据库命令 数据表命令 视图操作 Impala数据导入 刷新Impala数据 九、Java API 一…

近端策略优化算法PPO

本文介绍近端策略优化算法(Proximal Policy Optimization)也就是PPO。 文章目录 前言一、on-policy和off-policy1.1 on-policy和off-policy的概念1.2 Importance Sampling的概念 二、TRPO、PPO算法2.1 Trust Region Algorithms2.2 Stochastic Gradient A…

【强化学习】PPO算法求解倒立摆问题 + Pytorch代码实战

文章目录 一、倒立摆问题介绍二、PPO算法简介三、详细资料四、Python代码实战4.1 运行前配置4.2 主要代码4.3 运行结果展示4.4 关于可视化的设置 一、倒立摆问题介绍 Agent 必须在两个动作之间做出决定 - 向左或向右移动推车 - 以使连接到它的杆保持直立。 二、PPO算法简介 …

强化学习之PPO

阅读本文前先了解TRPO算法有助于理解,我对此也写过博客:https://blog.csdn.net/tianjuewudi/article/details/120191097 参考李宏毅老师的视频:https://www.bilibili.com/video/BV1Wv411h7kN?p80 PPO,全名Proximal Policy Opti…

【强化学习】PPO:从On-policy到Off-policy(PPO/TRPO/PPO-Penalty/PPO-Clip)

目录 一、为什么要从On- Policy到Off-Policy?二、如何从On- Policy到Off-Policy?三、如何使 p θ ( a t ∣ s t ) p_\theta(a_t|s_t) pθ​(at​∣st​)和 p θ ′ ( a t ∣ s t ) p_{\theta}(a_t|s_t) pθ′​(at​∣st​)不相差太多?3.1 PP…

如何理解PPO算法的核心操作clip

回顾 传统的策略梯度算法以下式作为策略网络的损失: g ^ E ^ t [ ∇ θ log ⁡ π θ ( a t ∣ s t ) A ^ t ] \hat{g}\hat{\mathbb{E}}_{t}\left[\nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right) \hat{A}_{t}\right] g^​E^t​[∇θ​logπθ​…

强化学习PPO从理论到代码详解(2)---PPO1和PPO2

在线或离线学习 上一节我们了解了什么是策略梯度,本节开始讲PPO理论之前,我们先提出一个概念,什么在线学习,什么离线学习。 On-policy: Then agent learned and the agent interacting with Environment is the same Off-policy…

强化学习PPO代码讲解

阅读本文前对PPO的基本原理要有概念性的了解,本文基于我的上一篇文章:强化学习之PPO 当然,查看代码对于算法的理解直观重要,这使得你的知识不止停留在概念的层面,而是深入到应用层面。 代码采用了简单易懂的强化学习…

PPO算法(附pytorch代码)

这里写目录标题 一、PPO算法(1)简介(2)On-policy?(3)GAE (Generalized Advantage Estimation) 三、代码代码解析: 一、PPO算法 (1)简介 PPO算法…

论文笔记之PPO

15年OpenAI发表了TRPO算法,一直策略单调提升的算法;17年DeepMind基于TRPO发表了一篇Distributed-PPO,紧接着OpenAI发表了这篇PPO。可以说TRPO是PPO的前身,PPO在TRPO的基础上进行改进,使得算法可读性更高,实…

PPO实战学习总结

PPO used in go-bigger 前段时间一直在学习ppo算法,写了 一点总结,记录一下自己对ppo算法的一些理解与RL实战时候容易遇到的一些问题。代码地址如下,需要的可以自取: https://github.com/FLBa9762/PPO_used_in_Gobigger.git一般…

PPO算法

在线学习和离线学习 在线学习:和环境互动的Agent以及和要学习的Agent是同一个, 同一个Agent,一边和环境做互动,一边在学习。离线学习: 和环境互动及的Agent以和要学习的Agent不是同一个,学习的Agent通过看别人完来学习。 利用新的…

PPO2代码 pytorch框架

PPO2代码玩gym库的Pendulum环境 2022-8-02更新 我发现这篇文章浏览量惨淡啊。 咋滴,是不相信的我代码能用是吗? 所以,我给出reward的收敛曲线图: 开玩笑,出来混,我能卖你生瓜码子吗? ———…

PPO实战

哈哈初学,复现龙龙老师的实例! state:是平衡小车上的杆子,观测状态由 4 个连续的参数组成:推车位置 [-2.4,2.4],车速 [-∞,∞],杆子角度 [~-41.8&#xff0c…

PyTorch实现PPO代码

原理:Proximal Policy Optimization近端策略优化(PPO) 视频:Proximal Policy Optimization (PPO) is Easy With PyTorch | Full PPO Tutorial 代码来自github: Youtube-Code-Repository EasyRL 网站:Neural…