Alexnet LRN层和conv2局部连接

article/2025/9/16 1:22:43

LRN(local response norm)局部归一

AlexNet本文出自NIPS2012,作者是大神Alex Krizhevsky,属于多伦多大学Hinton组。当年取得了ImageNet最好成绩,也是在那年之后,更多的更深的神经网路被提出,比如优秀的vgg,GoogleLeNet.
结构比较简单易于理解,可以看论文和文末博客回顾。

在第一二层卷积层中用了LRN。
ReLU 不需要输入归一化解决饱和问题。只要ReLU的输入大于0就可以学习。但是 局部正则模式( local normalization scheme )有利于增加泛化能力。(后期其他网络VGG、GOOGLENET、YOLO等放弃了这个LRN层,认为效果并不显著。)
局部归一的动机:在神经生物学有一个概念叫做 侧抑制(lateral inhibitio),指的是 被激活的神经元抑制相邻神经元。归一化(normalization)的目的是“抑制”,
局部响应归一化就是借鉴 侧抑制 的思想来实现局部抑制,使得其中响应大的值变得相对更大(自我感觉类似softmax的比例),并抑制其他较小反馈的神经元,增强了泛化能力(指训练好的模型在未见过的数据上的表现)。
尤其当我们使用ReLU 的时候这种“侧抑制”很管用。因为ReLU的响应结果是无界的(可以非常大)所以需要归一化。

这里写图片描述
k,n,α,β都是超参数,本文由验证集确定为k=2,n=5,α=10−4,β=0.75。
- a_{x,y}^{i}表示 首先应用第i个核 在位置(x,y) 然后运用ReLU非线性化 再 响应归一化 的神经元输出,
- b_{x,y}^{i} 表示局部响应归一化,
- N是该层中的核的总数,
- 求和是在相同空间位置处第i个核的n个“相邻”核映射上运行。
其中LRN又存在两种模式:
这里写图片描述
源码默认的是ACROSS_CHANNELS ,跨通道归一化(这里我称之为弱化),local_size:5(默认值),表示局部弱化在相邻五个特征图间中求和并且每一个值除去这个和.

局部归一不改变输入的尺寸

conv2和conv1不同,conv2中使用256个5*5大小的过滤器filter对96*27*27个特征图,进行进一步提取特征,但是处理的方式和conv1不同,过滤器是对96个特征图中的某几个特征图中相应的区域乘以相应的权重,然后加上偏置之后所得到区域进行卷积,比如过滤器中的一个点X11 ,如X11*new_X11,需要和96个特征图中的1,2,7特征图中的X11,new_X11 =1_X_11*1_W_11+2_X_11*2_W_11+7_X_11*7_W_11+Bias,经过这样卷积之后,然后在在加上宽度高度两边都填充2像素,会的到一个新的256个特征图.特征图的大小为:

(【27+2*2 - 5】/1 +1) = 27

Reference
https://prateekvjoshi.com/2016/04/05/what-is-local-response-normalization-in-convolutional-neural-networks/

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

https://zhuanlan.zhihu.com/p/23511063


http://chatgpt.dhexx.cn/article/e5lGghum.shtml

相关文章

tensorflow中的lrn函数详解

LRN函数类似DROPOUT和数据增强作为relu激励之后防止数据过拟合而提出的一种处理方法,全称是 local response normalization--局部响应标准化。这个函数很少使用,基本上被类似DROPOUT这样的方法取代,具体原理还是值得一看的 函数原型 def lrn(input, de…

CNN中的LRN层

LRN层是按下述公式计算的:(用处不大 可被dropout normalization替代) 转自:https://blog.csdn.net/searobbers_duck/article/details/51645941

ImageNet 中的 LRN

LRN(Local Response Normalization) LRN 神经网络初学者,没有什么理论基础,偶然看到个ImageNet,就准备从其入手,先弄懂每层的含义,其中这个LRN层真是让人百思不得其解,搜索了下&am…

LRN局部响应归一化

这个技术主要是深度学习训练时的一种提高准确度的技术方法。其中caffe、tensorflow等里面是很常见的方法,其跟激活函数是有区别的,LRN一般是在激活、池化后进行的一中处理方法。   AlexNet将LeNet的思想发扬光大,把CNN的基本原理应用到了很…

深度神经网络中的局部响应归一化LRN简介及实现

Alex、Hinton等人在2012年的NIPS论文《ImageNet Classification with Deep Convolutional Neural Networks》中将LRN应用于深度神经网络中(AlexNet)。论文见:http://www.cs.toronto.edu/~hinton/absps/imagenet.pdf ,截图如下: 公式解释&…

LRN

发展时间点 局部响应归一化这个方法流行于2012年的 AlexNet网络,它将这种方法付诸实践,验证了它的可行性。在caffe框架和tensorflow框架中,这都是经常和卷积、池化配合使用的方法。 作用时间点:LRN一般是在激活、池化后进行的一中…

LRN (Local Response Normalization,即局部响应归一化层)

LRN (Local Response Normalization,即局部响应归一化层) (一)先看看归一化吧 什么是归一化? 归一化化是归纳统一样本的统计分布性。就是要把你需要处理的数据经过处理后(通过某种算法)限制在你需要的一定范…

详解LRN(local response normalization--局部响应标准化)缓解过拟合

局部响应归一化层(Local Response Normalization) LRN全称为Local Response Normalization,即局部响应归一化层,LRN函数类似Dropout和数据增强作为relu激活函数之后防止数据过拟合而提出的一种处理方法。这个函数很少使用&#xf…

局部响应归一化LRN (Local Response Normalization)

一、LRN技术介绍: LRN(Local Response Normalization) 是一种提高深度学习准确度的技术方法。 LRN 一般是在激活、 池化函数后的一种方法。在 ALexNet 中, 提出了 LRN 层, 对局部神经元的活动创建竞争机制&#xff0c…

深度学习饱受争议的局部响应归一化(LRN)详解

前言:Local Response Normalization(LRN)技术主要是深度学习训练时的一种提高准确度的技术方法。其中caffe、tensorflow等里面是很常见的方法,其跟激活函数是有区别的,LRN一般是在激活、池化后进行的一种处理方法。LRN归一化技术首次在AlexNe…

压缩算法之算术编码浅析与实现

压缩算法之算术编码浅析与实现 简介实现思路实现代码参考资料 简介 算术编码,属于熵编码的范畴,常用于各种信息压缩场合,如图像、视频、音频压缩领域。 基本原理: 核心原则:出现频率高的信息,分配少的比特…

算术编码(1)

序列a2a1的区间为(0.2,0.22) 算术解码步骤:

用分组编码解决算术编码的精度要求问题

这篇博客要介绍的是算术编码、译码。主要用分组编码的思路解决了当消息比较长时,小数位数太多,计算工具精度达不到的问题。 文末给出了matlab代码。题目的要求是:已知26个英文字母和空格的统计概率,对文本文档中的消息&#xff08…

算术编码 matlab程序,算术编码算法的matlab实现

算术编码算法的matlab实现 实验 1 算术编码算法的 Matlab 实现实验学时:2实验类型:(演示、验证、综合、√设计、研究)实验要求:(√必修、选修)一、实验目的掌握算数编码原理。二、实验内容利用 Matlab 编写程序实现算数编码,包括…

十六、算术编码_2、算术编码举例实现

基本原理 在一次算术编码的执行前,为简便起见,首先假设输入的信源为0/1的二进制信源,0和1的概率比为7:3。即二者的概率为: p(0) = 0.7; p(1) = 0.3;假设输入的待编码信息为[0, 0, 1],在编码每一个符号时,都需要对概率区间进行分割,并通过与编码区间进行比较,判断是否…

信息论基础:算术编码

1 引言 霍夫曼码是一种无损编码,而且是最优的符号码。但是,它有两个缺点:(1)每个符号至少需要一个比特;(2)当符号的概率分布变化时,使用不方便。 用一个例子来看看霍夫…

多媒体数据处理实验1:算术编码

1. 算法描述 功能: 给定概率字典以及待编码字符串,求出该字符串算术编码的结果(最短二进制串),并能根据算数编码结果进行解码,得到原字符串。 2.算法流程: 算术编码流程: (1) 首先…

数字图像算术编码python_算术编码简介

上一篇讲了LZW编码,本篇讨论另一种不同的编码算法,算数编码。和哈夫曼编码一样,算数编码是熵编码的一种,是基于数据中字符出现的概率,给不同字符以不同的编码。本文也会对这两种编码方式的相似和不同点进行比较。 编码…

算术编码

文章首发于我的个人博客 前言 这篇博客主要总结大二下课程《信息论》实验的内容。主要包含固定模式的算数编码以及自适应模式的算术编码。我将首先介绍这两种算术编码的基本思想和实现思路,然后给出具体的python代码并对代码中的一些关键点进行解释说明。 固定模…

算术编码原理及其python实现

目录 1. 原理部分:2. 香农界理论分析:3. 代码实现:4.实验结果 1. 原理部分: 原理部分参考什么是算术编码 一个从信源序列到不可压缩二元序列的一个可逆映射,假设序列 { X 1 … X n } \{X_{1} \ldots X_{n}\} {X1​…X…