多项式加法

article/2025/8/15 4:17:32

多项式加法(5分)

题目内容:

一个多项式可以表达为x的各次幂与系数乘积的和,比如:

2x6+3x5+12x3+6x+20

现在,你的程序要读入两个多项式,然后输出这两个多项式的和,也就是把对应的幂上的系数相加然后输出。

程序要处理的幂最大为100。

输入格式:

总共要输入两个多项式,每个多项式的输入格式如下:

每行输入两个数字,第一个表示幂次,第二个表示该幂次的系数,所有的系数都是整数。第一行一定是最高幂,最后一行一定是0次幂。

注意第一行和最后一行之间不一定按照幂次降低顺序排列;如果某个幂次的系数为0,就不出现在输入数据中了;0次幂的系数为0时还是会出现在输入数据中。

输出格式:

从最高幂开始依次降到0幂,如:

2x6+3x5+12x3-6x+20

注意其中的x是小写字母x,而且所有的符号之间都没有空格,如果某个幂的系数为0则不需要有那项。

输入样例:

6 2

5 3

3 12

1 6

0 20

6 2

5 3

2 12

1 6

0 20

输出样例:

4x6+6x5+12x3+12x2+12x+40

时间限制:500ms内存限制:32000kb

#include <stdio.h>int main(void)
{int i,cnt;							//设置循环变量i和计数器cnt(用于统计第一个输出,控制是否输出符号) int a[101]={0};int b[101]={0};int inpm,inpx;cnt=0;								//初始化计数器 for(inpm=1;inpm!=0;)				//获取第一个多项式,保存到数组a {scanf("%d %d",&inpm,&inpx);		//inpm是幂次,对应数组的索引。inpx是系数,对应数组的值 a[inpm]=inpx;}for(inpm=1;inpm!=0;)				//获取第二个多项式,保存到数组b {scanf("%d %d",&inpm,&inpx);b[inpm]=inpx;}for(i=0;i<=100;i++)					//将两个多项式的同幂次系数相加 {a[i]+=b[i];}for(i=100;i>1;i--)					//遍历99个数组 {if(a[i]==0)						//系数是0就忽略 continue;if(a[i]==1||a[i]==-1)			//当多项式属于特殊值(1或-1) {if(a[i]>0&&cnt>0) {printf("+x%d",i);		//系数大于0 }else{printf("-x%d",i);		//系数小于0 }cnt++;}else{							//当多项式系数不是特殊值 if(a[i]>0&&cnt>0){printf("+%dx%d",a[i],i);//系数大于0 }else{printf("%dx%d",a[i],i);	//系数小于0}cnt++;} }if(a[i]!=0)							//当幂次为1时(i=1){if(a[i]==1)						//系数是1 {printf("+x");}else if(a[i]==-1){				//系数是-1 printf("-x");}else{printf("%+dx",a[i]);		//系数不是特殊值 }cnt++;}if(a[0]>0&&cnt>0)					//当不止一项且系数大于0时 {printf("+%d",a[0]);}else if(a[0]==0&&cnt>0)			//当不止一项且系数小于0时 {printf("+%d",a[0]);}else{								//当只有一项时 printf("%d",a[0]);}return 0; 
}

感想:完全独立完成的,但对结果很不满意,程序主体很简单,创建了两个大小为101数组去存储两个多项式,用索引表示幂次,索引对应的值表示幂次对应的系数,但是为了输出要求的格式,对特殊情况做了大量判断选择,尽管后期进一步优化,也是差强人意。

我希望寻找更好的方法解决目前存在的问题:

1.程序的资源浪费严重,一开始就创建了固定大小的数组,但在实际操作中不一定会使用到如此多得空间。特别是题目中输入数据是从大到小,明显有更好的写法。因为目前程序对数据的输入完全没有排序要求。

2.为实现要求的输出格式,对输出的判断条件过多,希望能大大简化。

3.为了判断是否为第一个输出,引入了计数器cnt,并分散到了各个代码块,以便判断是否输出符号,希望移除计数器。

4.获取两个多项式的代码块几乎相同,希望能够合并。想过自定义函数,但感觉不是非常好。

 


http://chatgpt.dhexx.cn/article/KELZr32K.shtml

相关文章

【学习笔记】多项式乘法

文章目录 前置知识&#xff1a;复数引子&#xff1a;虚数定义计算性质 有关多项式点值多项式相乘大整数乘法 FFT \textit{FFT} FFT离散傅里叶变换快速傅里叶变换代码实现蝴蝶变换计算 ω n − x \omega_n^{-x} ωn−x​代码壹号 改进方案精度提升常数优化&#xff1a;二合一常…

多项式除法

多项式除法 应用场景 多项式的因式分解 使用 先试出有理根 r 多项式对线性因子 x - r 做多项式除法&#xff0c;逐步降低次数。 整除 : 结果就是商与被除数的乘积不整除 : 结果是商与余数/被除数的和 只到二次多项式&#xff0c;再利用十字相乘法或求根公式&#xff0c;即…

C语言 多项式乘法 算法

多项式乘法 什么是多项式&#xff1f; 由若干个单项式相加组成的代数式叫做多项式&#xff08;若有减法&#xff1a;减一个数等于加上它的相反数&#xff09;。 多项式中的每个单项式叫做多项式的项&#xff0c;这些单项式中的最高项次数&#xff0c;就是这个多项式的次数。 多…

多项式乘法入门

多项式乘法入门 By SemiWaker 这是一篇蒟蒻对FFT、DFT、CZT、NTT的弱鸡理解 多项式 a0xa1x1a2x2⋯an−1xn−1 上面的这个形式叫做多项式。 系数&#xff1a; a0..n−1 项&#xff1a; aixi 界&#xff1a;n 为了方便我们系数序列就可以表示多项式。 线性卷积 AB∑i02n−2(∑…

一元多项式的乘法与加法运算

题目要求 设计函数分别求两个一元多项式的乘积与和。 输入格式: 输入分2行&#xff0c;每行分别先给出多项式非零项的个数&#xff0c;再以指数递降方式输入一个多项式非零项系数和指数&#xff08;绝对值均为不超过1000的整数&#xff09;。数字间以空格分隔。 输出格式: 输…

多项式乘法运算初级版

快速傅里叶变换在信息学竞赛中主要用于求卷积&#xff0c;或者说多项式乘法。我们知道&#xff0c;多项式乘法的普通算法时间复杂度 是&#xff0c;通过快速傅里叶变换可以使时间降为&#xff0c;那么接下来会详细介绍快速傅里叶变换的原理。 首先来介绍多项式的两种表示方法&…

FFT与多项式乘法

网上关于FFT在信号处理中应用的文章并不少&#xff0c;这里尽量少说废话&#xff0c;直接说如何用FFT实现多项式乘法。 多项式乘法&#xff0c;通常是用系数乘积的方式完成&#xff0c;这样的时间复杂度是O(n^2) n为多项式项数。系数乘法可以满足大多数的乘法需求&#xff0c;然…

多项式乘法

实验题目&#xff1a;多项式乘法问题 实验内容与要求 一元稀疏多项式简单计算器的基本功能是&#xff1a; &#xff08;1)输入并建立多项式。&#xff1b; &#xff08;2&#xff09;输出多项式&#xff0c;输出形式为整数序列&#xff1a;n,c1,e1,c2,e2,…,cn,en,其中n是多项…

多项式乘法运算终极版

在上一篇文章中 http://blog.csdn.net/acdreamers/article/details/39005227 介绍了用快速傅里叶变 换来求多项式的乘法。可以发现它是利用了单位复根的特殊性质&#xff0c;大大减少了运算&#xff0c;但是这种做法是对复数系数的矩阵 加以处理&#xff0c;每个复数系数的实…

多项式乘法(FFT)

1 前言 作为一名OI选手&#xff0c;至今未写过fft相关的博客&#xff0c;真是一大遗憾&#xff0c;这也导致我并没有真正推过fft的所有式子 这一篇fft的博客我将详细介绍多项式乘法&#xff0c;易于理解&#xff0c;主要是为了等我啥时候忘了回来看&#xff0c;当然&#xff0…

分治算法-03多项式乘法问题

多项式乘法 简介 多项式的运算表示是一个很常见的算法问题。 问题描述 给予两个多项式A(x)与B(x)&#xff0c;得出C(x)A(x)B(x)。例如&#xff0c;A(x)32x3x24x3&#xff0c;B(x)2x2&#xff0c;C(x)64x9x210x33x44x^5。 问题分析 一般情况下&#xff0c;使用系数表示多项式&a…

【数据结构】——多项式乘法

题目要求 从字符文件输入两个多项式的非零系数及对应的指数&#xff0c;建立多项式的链式存储结构&#xff0c;计算这两个多项式的乘积&#xff0c;输出乘积多项式的全部非零系数及对应的指数到另一字符文件中。 算法原理 两个多项式的乘法&#xff0c;可以借助两个多项式的…

多项式乘法(FFT)详解

本文只探讨多项式乘法(FFT)在信息学中的应用 如有错误或不明欢迎指出或提问&#xff0c;在此不胜感激 多项式 1. 系数表示法 一般应用最广泛的表示方式 用A(x)表示一个x-1次多项式&#xff0c;a[i]为 xi x i 的系数&#xff0c;则A(x) ∑n−10 ∑ 0 n − 1 a[i] * xi x i…

2.2 多项式乘法与加法运算(线性结构,C)

多项式乘法与加法运算 设计函数分别求两个一元多项式的乘积与和题意理解题意理解和积 求解思路多项式表示两种表示方式在事先已经知道具体多少项的时候&#xff0c;本题较好的实现方法&#xff1a;动态数组链表表示多项式的方法 程序框架如何读入多项式读入多项式的完整程序 加…

多项式乘法问题

多项式乘法问题 实验目的&#xff1a;设计一个一元稀疏多项式简单计算器。 实验内容与要求&#xff1a; 一元稀疏多项式简单计算器的基本功能是&#xff1a; &#xff08;1&#xff09;输入并建立多项式&#xff1b; &#xff08;2&#xff09;输出多项式&#xff0c;序列…

网络协议之视频直播核心技术讲解

网络视频直播存在已有很长一段时间&#xff0c;随着移动上下行带宽提升及资费的下调&#xff0c;视频直播被赋予了更多娱乐和社交的属性&#xff0c;人们享受随时随地进行直播和观看&#xff0c;直播的打开时间和延迟变成了影响产品功能发展重要指标。 那么&#xff0c;问题来了…

直播软件搭建技术原理:CDN 与直播

直播软件搭建技术原理&#xff1a;CDN 与直播 很多直播都是基于 CDN 来实现的。而通过声网的服务&#xff0c;或基于声网SDK与 CDN 结合&#xff0c;还可以实现在直播中的连麦互动、白板同步等强调实时性的场景。本文源自社区投稿&#xff0c;介绍了该场景下的一些基础知识。如…

暑期实习+秋招面经合集(更新ing)

大纲 开篇 自我介绍 &#xff1a;面试官你好&#xff0c;我叫林飞武&#xff0c;是一名通信工程大三学生&#xff0c;对计算机专业有着浓厚兴趣并且未来有志于在互联网的测试领域有深入发展。全套学习了计算机专业的专业课&#xff0c;计算机网络&#xff0c;操作系统等&#…

DNSPod十问王征:为什么你的网站无人问津?

&#x1f4e2; DNSPod十八周年庆将至&#xff0c;下期十问交给你来提问——《你&#xff0c;十问DNSPod》&#xff01;评论区留下你想问DNSPod团队的问题&#xff0c;一旦提问被选中&#xff0c;将得到十八周年纪念T恤&#xff01;详情请移步至DNSPod公众号十八周年庆推送。 广…

阿里云ACP认证考试笔记

课件&#xff1a;https://gitee.com/HanFerm/technical-documentation/tree/master/阿里云acp教材 本文档为公开内容 一、ACP是干嘛的 内容范围&#xff1a; 历史 二、阿里云综述 技术架构 优势 三、弹性计算 ECS ECS的组成与功能 ECS是由多个并列又相互关联的产品概念组成…