Matlab实现sift特征检测+图像拼接

article/2025/9/30 22:45:47

Matlab实现sift特征检测+图像拼接共有12个m文件,其中main为主程序,点击运行即可。

一、部分代码示例

close all;
clear;
clc;im1=imread('test3.png');
im2=imread('test4.png');gray1=img2gray(im1);
gray2=img2gray(im2);[des1,loc1]=sift(gray1);
[des2,loc2]=sift(gray2);figure;
drawPoints(im1,loc1,im2,loc2);Num=3;
Thresh=0.85;match=featureMatch(des1,des2,Num,Thresh);loc1=loc1(match(:,1),:);
loc2=loc2(match(:,2),:);figure;
linePoints(im1,loc1,im2,loc2);agl=getRotAgl(loc1,loc2);figure;
drawRotAglHist(agl);opt=optIndex(agl);
loc1=loc1(opt,:);
loc2=loc2(opt,:);figure;
linePoints(im1,loc1,im2,loc2);T=getTransMat(gray1,loc1,gray2,loc2);
im=imRegist(im1,im2,T);figure;
imshow(im);

全部详细代码见资源:Matlab实现sift特征检测+图像拼接源码

二、运行结果

1.对两幅图进行特征点检测:
在这里插入图片描述
2.全部对应点的匹配情况:
在这里插入图片描述
3.经过筛选后能作为图像配准控制点的SIFT匹配特征点连接:

4.图像拼接结果:
在这里插入图片描述
5.原图:
在这里插入图片描述
感谢博主destiny0321


http://chatgpt.dhexx.cn/article/HxCbawAs.shtml

相关文章

sfm算法之三角化(三角测量)

sfm算法流程一般是特征点提取、特征点匹配、计算本质矩阵/基础矩阵,最后三角化。但是利用机械臂去观察周围,前后帧姿态变化参数是具有的,所以不需要通过基础矩阵获取。 即利用机械臂的信息直接进行深度估计。已知:手眼标定、相机外…

简述人脸识别技术

简介 人脸识别技术是一种生物识别技术,可以用来确认用户身份。人脸识别技术相比于传统的身份识别技术有很大的优势,主要体现在方便性上。传统的身份认证方式诸如:密码、PIN码、射频卡片、口令、指纹等,需要用户记住复杂密码或者携…

Python机器视觉--OpenCV进阶(核心)-边缘检测之SIFT关键点检测

SIFT关键点检测 SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述。这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子。 …

图像特征与描述子(直方图, 聚类, 边缘检测, 兴趣点/关键点, Harris角点, 斑点(Blob), SIFI, 纹理特征)...

1.直方图 用于计算图片特征,表达, 使得数据具有总结性, 颜色直方图对数据空间进行量化,好比10个bin 2. 聚类 类内对象的相关性高 类间对象的相关性差 常用算法:kmeans, EM算法, meanshift&#…

SIFI尺度不变特征变换算法

SIFT 尺度不变特征变换算法 David Lowe关于Sfit算法,2004年发表在Int. Journal of Computer Vision的经典论文中,对尺度空间(scal space)是这样定义的 : It has been shown by Koenderink (1984) and Lindeberg (1994) that un…

Opencv图像识别从零到精通(34)---SIFI

一、理论知识 Scale Invariant Feature Transform,尺度不变特征变换匹配算法,对于算法的理论介绍,可以参考这篇文章http://blog.csdn.net/qq_20823641/article/details/51692415,里面很详细,可以更好的学习。这里就不多…

32-SIFI特征点提取(EmguCV学习)

文章目录 RecordCode效果 Record 1、特征点检测与匹配常用的算法:FAST(FastFeatureDetector)、STAR(StarFeatureDetector)、SIFT、SURF、ORB、MSER、GFTT(GoodFeaturesToTrackDetector)、HARRI…

SIFI特征点提取

尺度不变特征变换匹配算法详解 Scale Invariant Feature Transform(SIFT) Just For Fun zdd zddmailgmail.com 对于初学者,从David G.Lowe的论文到实现,有许多鸿沟,本文帮你跨越。 1、SIFT综述 尺度不变特征转换(Scale-invariant feature tr…

图像SIFI笔记

Image/userl representation > down screen tasks 端到端的 文本领域 字典 visual word本质是 local feature handcraft feature 希望这个具有足够的泛华性 generalize 为了有交集 泛化性 clustering 聚类 Quantization 量化 每张图像 有特征点 local feature sift(128d维…

特征点匹配(SIFI)

1.SIFI https://blog.csdn.net/weixin_38404120/article/details/73740612(参考了这个作者的内容) 结合书上加博客的内容进行理解; 求取SIFI特征的步骤: 首先要对图像归一化,然后将图像扩大为原来的两倍&#xff0…

SIFI和ORB在尺度缩放、旋转、仿射上的特征点不变实验代码,并比较SIFI和ORB提取特征点的速度

SIFI和ORB在尺度缩放、旋转、仿射上的特征点不变 一、SIFI算法1.验证旋转不变性2.验证尺度不变性3.验证仿射不变性 对原图进行仿射变换并输出 二、ORB算法1.验证旋转不变性2.验证尺度不变性3.验证仿射不变性 对原图进行仿射变换并输出 三、比较SIFT和ORB的尺度旋转,…

向量范数简述

向量范数:表征在向量空间中向量的大小 一般表示:,其中X是n维向量,一般如果省略下面的p且无特别说明的话,指的就是2范数,也叫欧几里得范数。对向量来说,就是指向量的模。 常用的向量范数: 0范…

欧几里得范数/欧几里得距离(L2范数)

首先m维空间的概念: Rm的距离结构: 2维平面空间: m维空间: 范形空间距离 n维矢量空间中的元素X的Lp范数: 其中X是一连串的向量 最常用的是L2范数: 本质是一个距离概念 参考:《数学分析》

概念理解_L2范数(欧几里得范数)

L2范数 L2范数、欧几里得范数一些概念。 首先,明确一点,常用到的几个概念,含义相同。 欧几里得范数(Euclidean norm) 欧式长度 L2 范数 L2距离 Euclidean norm Euclidean length L2 norm L2 distance norm 对于一…

0范数,1范数,欧几里得范数等范数总结

以下分别列举常用的向量范数和矩阵范数的定义。 向量范数 1-范数: 即向量元素绝对值之和,matlab调用函数norm(x, 1) 。 2-范数: Euclid范数(欧几里得范数,常用计算向量长度),即向量元素绝对值…

范数、正则化、归一化、标准化

在总结正则化(Regularization)之前,我们先谈一谈正则化是什么,为什么要正则化。 个人认为正则化这个字眼有点太过抽象和宽泛,其实正则化的本质很简单,就是对某一问题加以先验的限制或约束以达到某种特定目的…

常见向量范数和矩阵范数

1、向量范数 1-范数:,即向量元素绝对值之和,matlab调用函数norm(x, 1) 。 2-范数:,Euclid范数(欧几里得范数,常用计算向量长度),即向量元素绝对值的平方和再开方&#xf…

欧氏距离,l2范数,l2-loss,l2正则化

欧式距离,l2范数,l2-loss,l2正则化 1.欧氏距离2.L2范数范数计算公式L1范数L2范数在机器学习方面的区别为什么L2范数可以防止过拟合? 3.L2-Loss4.L2正则化正则化L2正则化 参考文献 1.欧氏距离 距离度量(Distance)用于衡量个体在空间上存在的距离&#x…

pytorch求范数函数——torch.norm

torch.norm(input, pfro, dimNone, keepdimFalse, outNone, dtypeNone) 返回所给定tensor的矩阵范数或向量范数,所谓范数也就是把一个高纬度的东西,压缩成为一个大于等于零的数,用以估算这里东西的大小(幅度) 参数: input:输入tensorp (int, float, i…

来自知乎的范数理解

以下分别列举常用的向量范数和矩阵范数的定义。 向量范数 1-范数: ,即向量元素绝对值之和,matlab调用函数norm(x, 1) 。 2-范数: ,Euclid范数(欧几里得范数,常用计算向量长度)&…