0范数,1范数,欧几里得范数等范数总结

article/2025/9/30 23:13:11

以下分别列举常用的向量范数和矩阵范数的定义。

  • 向量范数

1-范数:

即向量元素绝对值之和,matlab调用函数norm(x, 1) 。

2-范数:

Euclid范数(欧几里得范数,常用计算向量长度),即向量元素绝对值的平方和再开方,matlab调用函数norm(x, 2)。

范数:

即所有向量元素绝对值中的最大值,matlab调用函数norm(x, inf)。

范数

,即所有向量元素绝对值中的最小值,matlab调用函数norm(x, -inf)。

p-范数


,即向量元素绝对值的p次方和的1/p次幂,matlab调用函数norm(x, p)。

 

  • 矩阵范数

1-范数


, 列和范数,即所有矩阵列向量绝对值之和的最大值,matlab调用函数norm(A, 1)。

 

2-范数:

的最大特征值,

,谱范数,即A'A矩阵的最大特征值的开平方。matlab调用函数norm(x, 2)。
范数:

,行和范数,即所有矩阵行向量绝对值之和的最大值,matlab调用函数norm(A, inf)。

F-范数:

,Frobenius范数,即矩阵元素绝对值的平方和再开平方,matlab调用函数norm(A, ’fro‘)。

核范数

      ,是A的奇异值。

即奇异值之和。


http://chatgpt.dhexx.cn/article/7S5Mh2jm.shtml

相关文章

范数、正则化、归一化、标准化

在总结正则化(Regularization)之前,我们先谈一谈正则化是什么,为什么要正则化。 个人认为正则化这个字眼有点太过抽象和宽泛,其实正则化的本质很简单,就是对某一问题加以先验的限制或约束以达到某种特定目的…

常见向量范数和矩阵范数

1、向量范数 1-范数:,即向量元素绝对值之和,matlab调用函数norm(x, 1) 。 2-范数:,Euclid范数(欧几里得范数,常用计算向量长度),即向量元素绝对值的平方和再开方&#xf…

欧氏距离,l2范数,l2-loss,l2正则化

欧式距离,l2范数,l2-loss,l2正则化 1.欧氏距离2.L2范数范数计算公式L1范数L2范数在机器学习方面的区别为什么L2范数可以防止过拟合? 3.L2-Loss4.L2正则化正则化L2正则化 参考文献 1.欧氏距离 距离度量(Distance)用于衡量个体在空间上存在的距离&#x…

pytorch求范数函数——torch.norm

torch.norm(input, pfro, dimNone, keepdimFalse, outNone, dtypeNone) 返回所给定tensor的矩阵范数或向量范数,所谓范数也就是把一个高纬度的东西,压缩成为一个大于等于零的数,用以估算这里东西的大小(幅度) 参数: input:输入tensorp (int, float, i…

来自知乎的范数理解

以下分别列举常用的向量范数和矩阵范数的定义。 向量范数 1-范数: ,即向量元素绝对值之和,matlab调用函数norm(x, 1) 。 2-范数: ,Euclid范数(欧几里得范数,常用计算向量长度)&…

16.1 几何空间

文章目录 1 欧几里得范数2 距离3 标准内积5 夹角与正交6 叉乘7 平行四边形法则8 欧几里得运动 几何空间是用线性代数解决几何问题的一类空间,这是线性代数学习绕不过去的槛。几何空间,学习起来我觉得吧,主要是三个点:内积、长度、…

常见向量范数和矩阵范数及其MATLAB实现

参考 常见向量范数和矩阵范数及其MATLAB实现 - 云社区 - 腾讯云 1、向量范数 1-范数:,即向量元素绝对值之和,matlab调用函数norm(x, 1) 。 2-范数:,Euclid范数(欧几里得范数,常用计算向量长度…

MATLAB 欧几里得算法

MATLAB 欧几里得算法以及扩展欧几里得算法 前言一、Euclid算法二、Code1.引入库2.读入数据 前言 提示:在线性代数或高等代数中以熟悉求两个多项式最大公因子 一、Euclid算法 输入两个多项式 g(x) , h(x) ∈ F(x),满足 deg g(x) ≥ deg h(x) , 且 g(x) ≠ 0, 二、…

【 MATLAB 】norm ( Vector and matrix norms )(向量范数以及矩阵范数)

norm Vector and matrix norms Syntax n norm(v) n norm(v,p) n norm(X) n norm(X,p) n norm(X,fro) Description n norm(v)返回向量v的欧几里德范数。该范数也称为2范数,向量幅度或欧几里德长度。 n norm(v&#…

向量范数

向量范数的定义如下: 若实值函数(n维向量空间向一维向量空间的映射):满足下列条件: (1),;当且仅当; (2),,&…

向量和矩阵的各种范数

向量和矩阵的各种范数 一、向量的范数 首先定义一个向量为:a[-5,6,8, -10] 1.1 向量的1范数 向量的1范数即:向量的各个元素的绝对值之和,上述向量a的1范数结果就是:29,MATLAB代码实现为&…

欧几里得范数

原文链接 点击打开链接 1 范数 向量的范数可以简单形象的理解为向量的长度,或者向量到零点的距离,或者相应的两个点之间的距离。 2 距离 欧式距离(对应L2范数):最常见的两点之间或多点之间的距离表示法,…

p-范数(2-范数 即 欧几里得范数)

规范化矩阵 p-范数定义vecnorm和normvecnorm应用 废了废了,2016版本用不起vecnormnormnorm规范化矩阵 p-范数定义 常见 1-范数、2-范数(欧几里得范数) vecnorm和norm vecnorm 应用 计算欧式距离别再傻憨憨地去背两点之间的距离公式了&am…

L2范数-欧几里得范数

L1范数 L1范数是指向量中各个元素绝对值之和 L2范数 L2范数、欧几里得范数一些概念。 首先,明确一点,常用到的几个概念,含义相同。 欧几里得范数(Euclidean norm) 欧式长度 L2 范数 L2距离 Euclidean norm Eucl…

欧几里得范数(L2范数)

L1范数和L2范数我们应该经常接触,但是欧几里得范数可能有些人听着会有些陌生,乍一看以为是多么难的东西,其实欧几里得范数就是L2范数,只是叫法不同而已。 L1范数 L1范数是指向量中各个元素绝对值之和。 L2范数(欧几…

SVM算法的介绍

一、SVM算法的介绍 1.什么是SVM算法? SVM(Support Vector Machine)是一种常见的监督学习算法,用于进行二分类或多分类任务。它的主要思想是找到一个最优的超平面,将不同类别的样本分隔开。 超平面最大间隔介绍&#…

SVM原理及代码实现(学习笔记)

1.概念 支持向量机(Support Vector Machine, SVM)是一类按监督学习(supervised learning)方式对数据进行二元分类的广义线性分类器(generalized linear classifier),其决策边界是对学习样本求解…

SVM原理详解

SVM 原理详解 转自:http://www.blogjava.net/zhenandaci/category/31868.html (一)SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的…

SVM算法原理解读

-----------------------------------------------------需要死记硬背的部分--------------------------------------------- 超平面划分正负数据 支持向量上对应的公式: 转换为: 转换为: 正样例yi1,此时 负样例yi-1&#xff…

最容易理解的SVM算法原理

基于最大间隔分隔数据 1.1支持向量与超平面 SVM(Support Vector Mac)又称为支持向量机,是一种二分类的模型。当然如果进行修改之后也是可以用于多类别问题的分类。支持向量机可以分为线性核和非线性两大类。其主要思想为找到空间中的一个更够将所有数据样本划开的…