特征点匹配(SIFI)

article/2025/9/30 23:04:24

1.SIFI

https://blog.csdn.net/weixin_38404120/article/details/73740612(参考了这个作者的内容)

结合书上加博客的内容进行理解;

求取SIFI特征的步骤:

首先要对图像归一化,然后将图像扩大为原来的两倍,再滤波。

1.检测尺度空间的极值

1.1 首先不同尺度空间就是原来图像经过不同高斯滤核的高斯函数所形成的图像;(注意高斯函数有好多很好的性质)

1.2 那么为什么要从不同的尺度空间的寻找极值呢?

无论人眼观测照片的距离有多远,只要能辨认出物体关键的轮廓特征,那就可以大致知道图像所表达的信息。

计算机也一样,高斯卷积之后,图像虽然变模糊了。但是整体的像素没有变,依然可以找到灰度值突变的点.

(整体像素都经过了一个高斯函数的加权求值)   就是说图像虽然模糊了,但是你想要的特征点依然存在,却解决了其他的一些问题(比如说干扰特征点的提取)

1.3 根据尺度空间构建高斯金字塔核DOG金字塔

比较一下尺度空间和高斯金字塔?

(1)“尺度空间表达”在所有尺度上具有相同分辨率,而“图像金字塔化”在每层的表达上分辨率都会减少固定比率。

(2)“图像金字塔化”处理速度快,占用存储空间小,而“尺度空间表达”刚好相反

那么将两者融合起来的话,就得到了LOG图像,高斯拉普拉斯变换图像。其步骤是:先将照片降采样,得到了不同分辨率下的图像金字塔。再对每层图像进行高斯卷积。这样一来,原本的图像金字塔每层只有一张图像,而卷积后,每层又增加了多张不同模糊程度下的照片

但是LOG图像不是我们想要的,我们要的是DOG图像(高斯差分图像); 这里有个问题为什么一定需要DOG图像而LOG就不可以呢。

构造高斯差分图像的步骤是:在获得LOG图像后,用其相邻的图像进行相减,得到所有图像重新构造的金字塔就是DOG金字塔;

找到DOG图像之后,下面在进行寻找极值点;

当得到DOG金字塔后,我们接下来要做的是寻找DOG极值点。每个像素点与其周围的像素点比较,当其大于或者小于所有相邻点时,即为极值点。

注意:不仅仅是同一张图的像素找极值点(这里的极值点是针对临近的图形的所有像素的极值点)

这里找的极值点在精度上满足了,但我们找到的点都是我们想要的吗?

极值点有可能是 是噪点 或者是边缘轮廓带来的灰度值的突变;

结合边缘的性质,利用Hession矩阵求曲率;(harris)

下面找极值的方向

这里  说出现第二峰值  这个问题,我不是很清楚;

下面进行关键点的描述

接下来的要做的是:关键点的描述,即用一组向量将关键点描述出来

1.将原图像x轴转到与主方向相同的方向

2.,再以特征点为中心,在旋转后的图像中取一个mσBp x mσBp大小的图像区域。并将它等间隔划分成Bp X Bp个子区域,每个间隔为mσ像元(没有理解)

3.在每子区域内计算8个方向的梯度方向直方图,绘制每个梯度方向的累加值,形成一个种子点。与求特征点主方向时有所不同,此时,每个子区域的梯度方向直方图将0°~360°划分为8个方向范围,每个范围为45°,这样,每个种子点共有8个方向的梯度强度信息。由于存在4X4(Bp X Bp)个子区域,所以,共有4X4X8=128个数据,最终形成128维的SIFT特征矢量。同样,对于特征矢量需要进行高斯加权处理,加权采用方差为mσBp/2的标准高斯函数,其中距离为各点相对于特征点的距离。使用高斯权重的是为了防止位置微小的变化给特征向量带来很大的改变,并且给远离特征点的点赋予较小的权重,以防止错误的匹配
 

 

有很多内容都是参考那个博主的,主要是自己理解,目前理解了一点。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


http://chatgpt.dhexx.cn/article/62k09n8W.shtml

相关文章

SIFI和ORB在尺度缩放、旋转、仿射上的特征点不变实验代码,并比较SIFI和ORB提取特征点的速度

SIFI和ORB在尺度缩放、旋转、仿射上的特征点不变 一、SIFI算法1.验证旋转不变性2.验证尺度不变性3.验证仿射不变性 对原图进行仿射变换并输出 二、ORB算法1.验证旋转不变性2.验证尺度不变性3.验证仿射不变性 对原图进行仿射变换并输出 三、比较SIFT和ORB的尺度旋转,…

向量范数简述

向量范数:表征在向量空间中向量的大小 一般表示:,其中X是n维向量,一般如果省略下面的p且无特别说明的话,指的就是2范数,也叫欧几里得范数。对向量来说,就是指向量的模。 常用的向量范数: 0范…

欧几里得范数/欧几里得距离(L2范数)

首先m维空间的概念: Rm的距离结构: 2维平面空间: m维空间: 范形空间距离 n维矢量空间中的元素X的Lp范数: 其中X是一连串的向量 最常用的是L2范数: 本质是一个距离概念 参考:《数学分析》

概念理解_L2范数(欧几里得范数)

L2范数 L2范数、欧几里得范数一些概念。 首先,明确一点,常用到的几个概念,含义相同。 欧几里得范数(Euclidean norm) 欧式长度 L2 范数 L2距离 Euclidean norm Euclidean length L2 norm L2 distance norm 对于一…

0范数,1范数,欧几里得范数等范数总结

以下分别列举常用的向量范数和矩阵范数的定义。 向量范数 1-范数: 即向量元素绝对值之和,matlab调用函数norm(x, 1) 。 2-范数: Euclid范数(欧几里得范数,常用计算向量长度),即向量元素绝对值…

范数、正则化、归一化、标准化

在总结正则化(Regularization)之前,我们先谈一谈正则化是什么,为什么要正则化。 个人认为正则化这个字眼有点太过抽象和宽泛,其实正则化的本质很简单,就是对某一问题加以先验的限制或约束以达到某种特定目的…

常见向量范数和矩阵范数

1、向量范数 1-范数:,即向量元素绝对值之和,matlab调用函数norm(x, 1) 。 2-范数:,Euclid范数(欧几里得范数,常用计算向量长度),即向量元素绝对值的平方和再开方&#xf…

欧氏距离,l2范数,l2-loss,l2正则化

欧式距离,l2范数,l2-loss,l2正则化 1.欧氏距离2.L2范数范数计算公式L1范数L2范数在机器学习方面的区别为什么L2范数可以防止过拟合? 3.L2-Loss4.L2正则化正则化L2正则化 参考文献 1.欧氏距离 距离度量(Distance)用于衡量个体在空间上存在的距离&#x…

pytorch求范数函数——torch.norm

torch.norm(input, pfro, dimNone, keepdimFalse, outNone, dtypeNone) 返回所给定tensor的矩阵范数或向量范数,所谓范数也就是把一个高纬度的东西,压缩成为一个大于等于零的数,用以估算这里东西的大小(幅度) 参数: input:输入tensorp (int, float, i…

来自知乎的范数理解

以下分别列举常用的向量范数和矩阵范数的定义。 向量范数 1-范数: ,即向量元素绝对值之和,matlab调用函数norm(x, 1) 。 2-范数: ,Euclid范数(欧几里得范数,常用计算向量长度)&…

16.1 几何空间

文章目录 1 欧几里得范数2 距离3 标准内积5 夹角与正交6 叉乘7 平行四边形法则8 欧几里得运动 几何空间是用线性代数解决几何问题的一类空间,这是线性代数学习绕不过去的槛。几何空间,学习起来我觉得吧,主要是三个点:内积、长度、…

常见向量范数和矩阵范数及其MATLAB实现

参考 常见向量范数和矩阵范数及其MATLAB实现 - 云社区 - 腾讯云 1、向量范数 1-范数:,即向量元素绝对值之和,matlab调用函数norm(x, 1) 。 2-范数:,Euclid范数(欧几里得范数,常用计算向量长度…

MATLAB 欧几里得算法

MATLAB 欧几里得算法以及扩展欧几里得算法 前言一、Euclid算法二、Code1.引入库2.读入数据 前言 提示:在线性代数或高等代数中以熟悉求两个多项式最大公因子 一、Euclid算法 输入两个多项式 g(x) , h(x) ∈ F(x),满足 deg g(x) ≥ deg h(x) , 且 g(x) ≠ 0, 二、…

【 MATLAB 】norm ( Vector and matrix norms )(向量范数以及矩阵范数)

norm Vector and matrix norms Syntax n norm(v) n norm(v,p) n norm(X) n norm(X,p) n norm(X,fro) Description n norm(v)返回向量v的欧几里德范数。该范数也称为2范数,向量幅度或欧几里德长度。 n norm(v&#…

向量范数

向量范数的定义如下: 若实值函数(n维向量空间向一维向量空间的映射):满足下列条件: (1),;当且仅当; (2),,&…

向量和矩阵的各种范数

向量和矩阵的各种范数 一、向量的范数 首先定义一个向量为:a[-5,6,8, -10] 1.1 向量的1范数 向量的1范数即:向量的各个元素的绝对值之和,上述向量a的1范数结果就是:29,MATLAB代码实现为&…

欧几里得范数

原文链接 点击打开链接 1 范数 向量的范数可以简单形象的理解为向量的长度,或者向量到零点的距离,或者相应的两个点之间的距离。 2 距离 欧式距离(对应L2范数):最常见的两点之间或多点之间的距离表示法,…

p-范数(2-范数 即 欧几里得范数)

规范化矩阵 p-范数定义vecnorm和normvecnorm应用 废了废了,2016版本用不起vecnormnormnorm规范化矩阵 p-范数定义 常见 1-范数、2-范数(欧几里得范数) vecnorm和norm vecnorm 应用 计算欧式距离别再傻憨憨地去背两点之间的距离公式了&am…

L2范数-欧几里得范数

L1范数 L1范数是指向量中各个元素绝对值之和 L2范数 L2范数、欧几里得范数一些概念。 首先,明确一点,常用到的几个概念,含义相同。 欧几里得范数(Euclidean norm) 欧式长度 L2 范数 L2距离 Euclidean norm Eucl…

欧几里得范数(L2范数)

L1范数和L2范数我们应该经常接触,但是欧几里得范数可能有些人听着会有些陌生,乍一看以为是多么难的东西,其实欧几里得范数就是L2范数,只是叫法不同而已。 L1范数 L1范数是指向量中各个元素绝对值之和。 L2范数(欧几…