常见向量范数和矩阵范数

article/2025/10/1 0:05:30


1、向量范数

1-范数:,即向量元素绝对值之和,matlab调用函数norm(x, 1) 。

2-范数:,Euclid范数(欧几里得范数,常用计算向量长度),即向量元素绝对值的平方和再开方,matlab调用函数norm(x, 2)。

∞-范数:,即所有向量元素绝对值中的最大值,matlab调用函数norm(x, inf)。

-∞-范数:,即所有向量元素绝对值中的最小值,matlab调用函数norm(x, -inf)。

p-范数:,即向量元素绝对值的p次方和的1/p次幂,matlab调用函数norm(x, p)。


2、矩阵范数

1-范数:, 列和范数,即所有矩阵列向量绝对值之和的最大值,matlab调用函数norm(A, 1)。

2-范数:,谱范数,即A'A矩阵的最大特征值的开平方。matlab调用函数norm(x, 2)。

∞-范数:,行和范数,即所有矩阵行向量绝对值之和的最大值,matlab调用函数norm(A, inf)。

F-范数:,Frobenius范数,即矩阵元素绝对值的平方和再开平方,matlab调用函数norm(A, ’fro‘)。


附matlab中norm函数说明

The norm of a matrix is a scalar that gives some measure of the magnitude of the elements of the matrix. The norm function calculates several different types of matrix norms:

n = norm(A) returns the largest singular value of A, max(svd(A)).
n = norm(A,p) returns a different kind of norm, depending on the value of p.


When A is a vector:

文章出处:http://blog.csdn.net/left_la/article/details/9159949。


http://chatgpt.dhexx.cn/article/ZTCm2Hgs.shtml

相关文章

欧氏距离,l2范数,l2-loss,l2正则化

欧式距离,l2范数,l2-loss,l2正则化 1.欧氏距离2.L2范数范数计算公式L1范数L2范数在机器学习方面的区别为什么L2范数可以防止过拟合? 3.L2-Loss4.L2正则化正则化L2正则化 参考文献 1.欧氏距离 距离度量(Distance)用于衡量个体在空间上存在的距离&#x…

pytorch求范数函数——torch.norm

torch.norm(input, pfro, dimNone, keepdimFalse, outNone, dtypeNone) 返回所给定tensor的矩阵范数或向量范数,所谓范数也就是把一个高纬度的东西,压缩成为一个大于等于零的数,用以估算这里东西的大小(幅度) 参数: input:输入tensorp (int, float, i…

来自知乎的范数理解

以下分别列举常用的向量范数和矩阵范数的定义。 向量范数 1-范数: ,即向量元素绝对值之和,matlab调用函数norm(x, 1) 。 2-范数: ,Euclid范数(欧几里得范数,常用计算向量长度)&…

16.1 几何空间

文章目录 1 欧几里得范数2 距离3 标准内积5 夹角与正交6 叉乘7 平行四边形法则8 欧几里得运动 几何空间是用线性代数解决几何问题的一类空间,这是线性代数学习绕不过去的槛。几何空间,学习起来我觉得吧,主要是三个点:内积、长度、…

常见向量范数和矩阵范数及其MATLAB实现

参考 常见向量范数和矩阵范数及其MATLAB实现 - 云社区 - 腾讯云 1、向量范数 1-范数:,即向量元素绝对值之和,matlab调用函数norm(x, 1) 。 2-范数:,Euclid范数(欧几里得范数,常用计算向量长度…

MATLAB 欧几里得算法

MATLAB 欧几里得算法以及扩展欧几里得算法 前言一、Euclid算法二、Code1.引入库2.读入数据 前言 提示:在线性代数或高等代数中以熟悉求两个多项式最大公因子 一、Euclid算法 输入两个多项式 g(x) , h(x) ∈ F(x),满足 deg g(x) ≥ deg h(x) , 且 g(x) ≠ 0, 二、…

【 MATLAB 】norm ( Vector and matrix norms )(向量范数以及矩阵范数)

norm Vector and matrix norms Syntax n norm(v) n norm(v,p) n norm(X) n norm(X,p) n norm(X,fro) Description n norm(v)返回向量v的欧几里德范数。该范数也称为2范数,向量幅度或欧几里德长度。 n norm(v&#…

向量范数

向量范数的定义如下: 若实值函数(n维向量空间向一维向量空间的映射):满足下列条件: (1),;当且仅当; (2),,&…

向量和矩阵的各种范数

向量和矩阵的各种范数 一、向量的范数 首先定义一个向量为:a[-5,6,8, -10] 1.1 向量的1范数 向量的1范数即:向量的各个元素的绝对值之和,上述向量a的1范数结果就是:29,MATLAB代码实现为&…

欧几里得范数

原文链接 点击打开链接 1 范数 向量的范数可以简单形象的理解为向量的长度,或者向量到零点的距离,或者相应的两个点之间的距离。 2 距离 欧式距离(对应L2范数):最常见的两点之间或多点之间的距离表示法,…

p-范数(2-范数 即 欧几里得范数)

规范化矩阵 p-范数定义vecnorm和normvecnorm应用 废了废了,2016版本用不起vecnormnormnorm规范化矩阵 p-范数定义 常见 1-范数、2-范数(欧几里得范数) vecnorm和norm vecnorm 应用 计算欧式距离别再傻憨憨地去背两点之间的距离公式了&am…

L2范数-欧几里得范数

L1范数 L1范数是指向量中各个元素绝对值之和 L2范数 L2范数、欧几里得范数一些概念。 首先,明确一点,常用到的几个概念,含义相同。 欧几里得范数(Euclidean norm) 欧式长度 L2 范数 L2距离 Euclidean norm Eucl…

欧几里得范数(L2范数)

L1范数和L2范数我们应该经常接触,但是欧几里得范数可能有些人听着会有些陌生,乍一看以为是多么难的东西,其实欧几里得范数就是L2范数,只是叫法不同而已。 L1范数 L1范数是指向量中各个元素绝对值之和。 L2范数(欧几…

SVM算法的介绍

一、SVM算法的介绍 1.什么是SVM算法? SVM(Support Vector Machine)是一种常见的监督学习算法,用于进行二分类或多分类任务。它的主要思想是找到一个最优的超平面,将不同类别的样本分隔开。 超平面最大间隔介绍&#…

SVM原理及代码实现(学习笔记)

1.概念 支持向量机(Support Vector Machine, SVM)是一类按监督学习(supervised learning)方式对数据进行二元分类的广义线性分类器(generalized linear classifier),其决策边界是对学习样本求解…

SVM原理详解

SVM 原理详解 转自:http://www.blogjava.net/zhenandaci/category/31868.html (一)SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的…

SVM算法原理解读

-----------------------------------------------------需要死记硬背的部分--------------------------------------------- 超平面划分正负数据 支持向量上对应的公式: 转换为: 转换为: 正样例yi1,此时 负样例yi-1&#xff…

最容易理解的SVM算法原理

基于最大间隔分隔数据 1.1支持向量与超平面 SVM(Support Vector Mac)又称为支持向量机,是一种二分类的模型。当然如果进行修改之后也是可以用于多类别问题的分类。支持向量机可以分为线性核和非线性两大类。其主要思想为找到空间中的一个更够将所有数据样本划开的…

SVM介绍

SVM 概念 支持向量机(support vector machines,SVM)是一种二分类模型。基本原理是求解能够正确划分训练数据集并且几何间隔最大的分离超平面。 作用 svm不仅可以支持这种简单的线性可分离的数据,还可以 借助“软间隔(soft margi…

SVM理论

SVM入门(一)至(三)Refresh 按:之前的文章重新汇编一下,修改了一些错误和不当的说法,一起复习,然后继续SVM之旅. (一)SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年…