算法之单调栈常见题目

article/2025/9/30 19:51:06

什么时候需要使用单调栈?
通常是一维数组,要寻找任意一个右边或者左边第一个比自己大或小的元素的位置,此时我们就想到可以使用单调栈了
单调栈的本质是空间换时间,因为在遍历的过程中需要用一个栈来记录右边第一个比当前元素高的元素,优点是整个数组只需要遍历一次。所以时间复杂度是O(n)就可以找到每一个元素的右边第一个比它大的元素位置呢?
更直白来说,就是用一个栈来记录我们遍历过的元素,因为我们遍历数组的时候,我们不知道之前都遍历了哪些元素,以至于遍历一个元素找不到是不是之前遍历过一个更小的,所以我们需要用一个容器(这里用单调栈)来记录我们遍历过的元素。
leedcode739. 每日温度
给定一个整数数组 temperatures ,表示每天的温度,返回一个数组 answer ,其中 answer[i] 是指对于第 i 天,下一个更高温度出现在几天后。如果气温在这之后都不会升高,请在该位置用 0 来代替。

示例 1:

输入: temperatures = [73,74,75,71,69,72,76,73]
输出: [1,1,4,2,1,1,0,0]
示例2:
输入: temperatures = [30,40,50,60]
输出: [1,1,1,0]
示例 3:

输入: temperatures = [30,60,90]
输出: [1,1,0]

在这里插入图片描述

class Solution {//单调栈就是解决找到第一个比原来的数大或小的数,然后进行出栈并通过相减求出之前的坐标public int[] dailyTemperatures(int[] temperatures) {//创建一个栈,存储单调递增,存的是下标Stack<Integer> stack=new Stack<>();//第一个存储的元素默认是第一个数组元素下标stack.push(0);//存放结果的result数组int[] result=new int[temperatures.length];//默认都是0,因为后面可以没有再比他大的数那么温度不会再升高,就是0Arrays.fill(result,0);for(int i=1;i<temperatures.length;i++){if(temperatures[i]<=temperatures[stack.peek()]){stack.push(i);}while(!stack.isEmpty()&&temperatures[i]>temperatures[stack.peek()]){//比较到最后可能栈已经弹完,需要进行判空result[stack.peek()]=i-stack.pop();}//比较完才加入当前下标stack.push(i);}return result;}
}

leedcode496. 下一个更大元素 I
nums1 中数字 x 的 下一个更大元素 是指 x 在 nums2 中对应位置 右侧 的 第一个 比 x 大的元素。

给你两个 没有重复元素 的数组 nums1 和 nums2 ,下标从 0 开始计数,其中nums1 是 nums2 的子集。

对于每个 0 <= i < nums1.length ,找出满足 nums1[i] == nums2[j] 的下标 j ,并且在 nums2 确定 nums2[j] 的 下一个更大元素 。如果不存在下一个更大元素,那么本次查询的答案是 -1 。

返回一个长度为 nums1.length 的数组 ans 作为答案,满足 ans[i] 是如上所述的 下一个更大元素 。

示例 1:

输入:nums1 = [4,1,2], nums2 = [1,3,4,2].
输出:[-1,3,-1]
解释:nums1中每个值的下一个更大元素如下所述:

  • 4 ,用加粗斜体标识,nums2 = [1,3,4,2]。不存在下一个更大元素,所以答案是 -1 。
  • 1 ,用加粗斜体标识,nums2 = [1,3,4,2]。下一个更大元素是 3 。
  • 2 ,用加粗斜体标识,nums2 = [1,3,4,2]。不存在下一个更大元素,所以答案是 -1 。

示例 2:
输入:nums1 = [2,4], nums2 = [1,2,3,4].
输出:[3,-1]
解释:nums1 中每个值的下一个更大元素如下所述:

  • 2 ,用加粗斜体标识,nums2 = [1,2,3,4]。下一个更大元素是 3 。
  • 4 ,用加粗斜体标识,nums2 = [1,2,3,4]。不存在下一个更大元素,所以答案是 -1 。

注意题目中说是两个没有重复元素 的数组 nums1 和 nums2。
没有重复元素,我们就可以用map来做映射了。根据数值快速找到下标,还可以判断nums2[i]是否在nums1中出现过。
从题目示例中我们可以看出最后是要求nums1的每个元素在nums2中下一个比当前元素大的元素,那么就要定义一个和nums1一样大小的数组result来存放结果。

public int[] nextGreaterElement(int[] nums1, int[] nums2) {//建立一个单调栈Deque<Integer> stack = new LinkedList<>();Map<Integer, Integer> map = new HashMap();for (int i = 0; i < nums1.length; i++) {map.put(nums1[i], i);}//存放数组int[] result = new int[nums1.length];Arrays.fill(result, -1);//默认栈中第一个元素的下标是0stack.push(0);for (int i = 1; i < nums2.length; i++) {//情况一,栈顶元素和当前遍历元素相等if (nums2[i] == nums2[stack.peek()]) {stack.push(i);}//情况二,栈顶元素大于当前遍历元素if (nums2[i] < nums2[stack.peek()]) {stack.push(i);}//情况三,栈顶元素小于当前遍历元素//对栈中元素进行判空,并比较结果while (!stack.isEmpty() && nums2[i] > nums2[stack.peek()]) {//因为主要求得是num1每个值对应的下一个元素,所以判断当前map是否存在nums1中的元素if (map.containsKey(nums2[stack.peek()])) {Integer index = map.get(nums2[stack.peek()]);result[index] = nums2[i];//存放比当前nums1大的下一个元素}stack.pop();}stack.push(i);}return result;}

503. 下一个更大元素 II
给定一个循环数组 nums ( nums[nums.length - 1] 的下一个元素是 nums[0] ),返回 nums 中每个元素的 下一个更大元素 。

数字 x 的 下一个更大的元素 是按数组遍历顺序,这个数字之后的第一个比它更大的数,这意味着你应该循环地搜索它的下一个更大的数。如果不存在,则输出 -1 。

示例 1:

输入: nums = [1,2,1]
输出: [2,-1,2]
解释: 第一个 1 的下一个更大的数是 2; 数字 2找不到下一个更大的数; 第二个 1 的下一个最大的数需要循环搜索,结果也是 2。

示例 2:

输入: nums = [1,2,3,4,3]
输出: [2,3,4,-1,4]

对于成环的题目可以考虑使用取模

  //单调栈成环,一般用模%public int[] nextGreaterElements(int[] nums) {//栈Deque<Integer> stack=new LinkedList<>();int[] result=new int[nums.length];if(nums.length==0){return result;}Arrays.fill(result,-1);stack.push(0);//遍历长度为原来的两倍for (int i=1;i<(nums.length*2);i++){if(nums[i % nums.length]<nums[stack.peek()]){stack.push(i%nums.length);}if(nums[i%nums.length]==nums[stack.peek()]){stack.push(i%nums.length);//放栈下标的时候也要记得取模,不然nums[stack.peek()]可能会越界}while(!stack.isEmpty()&&nums[i%nums.length]>nums[stack.peek()]){result[stack.peek()]=nums[i%nums.length];stack.pop();}stack.push(i);}return result;}

leedcode42. 接雨水
给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。
在这里插入图片描述

输入:height = [0,1,0,2,1,0,1,3,2,1,2,1]
输出:6
解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。

从栈头(元素从栈头弹出)到栈底的顺序应该是从小到大的顺序。

因为一旦发现添加的柱子高度大于栈头元素了,此时就出现凹槽了,栈头元素就是凹槽底部的柱子,栈头第二个元素就是凹槽左边的柱子,而添加的元素就是凹槽右边的柱子。
在这里插入图片描述
在这里插入图片描述
从栈头(元素从栈头弹出)到栈底的顺序应该是从小到大的顺序。

因为一旦发现添加的柱子高度大于栈头元素了,此时就出现凹槽了,栈头元素就是凹槽底部的柱子,栈头第二个元素就是凹槽左边的柱子,而添加的元素就是凹槽右边的柱子。
在这里插入图片描述

   public int trap(int[] height) {//创建单调栈,找到左右两边第一个比它大的数,单调递增栈Deque<Integer> stack=new LinkedList<>();int result=0;//刚开始放首个元素stack.push(0);for(int i=1;i<height.length;i++) {//如果当前遍历的元素(柱子)高度小于栈顶元素的高度,就把这个元素加入栈中,因为栈里本来就要保持从小到大的顺序(从栈头到栈底)。if (height[i] < height[stack.peek()]) {stack.push(i);}//如果当前遍历的元素(柱子)高度等于栈顶元素的高度,要跟更新栈顶元素,因为遇到相相同高度的柱子,需要使用最右边的柱子来计算宽度。if(height[i]==height[stack.peek()]){stack.pop();stack.push(i);}//如果当前遍历的元素(柱子)高度大于栈顶元素的高度,此时就出现凹槽了while (!stack.isEmpty()&&height[i] > height[stack.peek()]) {int mid = stack.pop();if (!stack.isEmpty()) {int left = stack.peek();int right = i;//计算宽int w = right - left - 1;//计算高int h = Math.min(height[left], height[right]) - height[mid];result += w * h;}}stack.push(i);}return result;}

leedcode84. 柱状图中最大的矩形
给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。

求在该柱状图中,能够勾勒出来的矩形的最大面积。
在这里插入图片描述
本题和接雨水拿到题很像,只不过是找每个柱子左右两边第一个小于该柱子的柱子,所以从栈头(元素从栈头弹出)到栈底的顺序应该是从大到小的顺序!
在这里插入图片描述
只有栈里从大到小的顺序,才能保证栈顶元素找到左右两边第一个小于栈顶元素的柱子。
主要有三种情况:
情况一:当前遍历的元素heights[i]大于栈顶元素heights[stack.peek()]的情况
情况二:当前遍历的元素heights[i]等于栈顶元素heights[stack.peek()]的情况
情况三:当前遍历的元素heights[i]小于栈顶元素heights[stack.peek()]的情况
需要注意的是要在原来的数组里面首部和尾部加0
首先来说末尾为什么要加元素0?
如果数组本身就是升序的,例如[2,4,6,8],那么入栈之后 都是单调递减,一直都没有走情况三 计算结果的哪一步,所以最后输出的就是0了。 如图:
在这里插入图片描述
那么结尾加一个0,就会让栈里的所有元素,走到情况三的逻辑。

开头为什么要加元素0?
如果数组本身是降序的,例如 [8,6,4,2],在 8 入栈后,6 开始与8 进行比较,此时我们得到 mid(8),rigt(6),但是得不到 left。
在这里插入图片描述
计算过程
在这里插入图片描述

class Solution {public int largestRectangleArea(int[] heights) {// 数组扩容,在头和尾各加入一个元素int [] newHeights = new int[heights.length + 2];newHeights[0] = 0;newHeights[newHeights.length - 1] = 0;for (int index = 0; index < heights.length; index++){newHeights[index + 1] = heights[index];}heights = newHeights;int result=0;Deque<Integer> stack=new LinkedList<>();stack.push(0);//单调递减栈for(int i=1;i<heights.length;i++){if(heights[i]>heights[stack.peek()]){stack.push(i);}if(heights[i]==heights[stack.peek()]){stack.pop();stack.push(i);}while(!stack.isEmpty()&&heights[i]<heights[stack.peek()]){//中间元素int mid=stack.pop();if(!stack.isEmpty()){//左边,右边找最大int height=heights[mid];int width=i-stack.peek()-1;result=Math.max(result,height*width);}}stack.push(i);}return result;}
}

http://chatgpt.dhexx.cn/article/BfNLhCch.shtml

相关文章

单调栈及单调栈的应用

什么是单调栈 单调递增栈&#xff1a;单调递增栈就是从栈底到栈顶数据是从大到小单调递减栈&#xff1a;单调递减栈就是从栈底到栈顶数据是从小到大 解决那类问题 要知道单调栈的适用于解决什么样的问题&#xff0c;我们首先需要知道单调栈的作用。单调栈分为单调递增栈和单调…

理解单调栈与单调队列

单调栈 单调栈&#xff1a;栈内的元素按照某种方式排序下单调递增或单调递减&#xff0c;如果新入栈的元素破坏的单调性&#xff0c;就弹出栈内元素&#xff0c;直到满足单调性。 单调栈分为单调递增栈和单调递减栈&#xff1a; 单调递增栈&#xff1a;栈中数据入栈或出栈的…

【栈 单调栈】浅谈单调栈与单调栈的理解

单调栈 定义&#xff1a; 单调栈&#xff0c;顾名思义&#xff0c;是栈内元素保持一定单调性&#xff08;单调递增或单调递减&#xff09;的栈。这里的单调递增或递减是指的从栈顶到栈底单调递增或递减。既然是栈&#xff0c;就满足后进先出的特点。与之相对应的是单调队列。 …

单调栈(一)

单调栈基本概念及实现 方案1&#xff1a;对于每一个数&#xff0c;遍历其左右位置&#xff0c;时间复杂度为O(N^2) 方案2&#xff1a;单调栈&#xff0c;每个元素入栈一次出栈一次&#xff0c;时间复杂度为O(N) &#xff08;一&#xff09;数组中没有重复值 示例&#xff1a;[…

第九章:单调栈与单调队列

单调栈与单调队列 一、单调栈1、什么是单调栈&#xff1f;2、单调栈的模板&#xff08;1&#xff09;问题&#xff1a;&#xff08;2&#xff09;分析&#xff1a; 二、单调队列1、什么是单调队列2、单调队列模板&#xff08;1&#xff09;问题&#xff08;2&#xff09;分析 一…

单调栈算法详解

单调栈算法详解 单调栈使用模板 stack<int> st; //此处一般需要给数组最后添加结束标志符&#xff0c;具体下面例题会有详细讲解 for (遍历这个数组){if (栈空 || 栈顶元素大于等于当前比较元素){入栈;}else{while (栈不为空 && 栈顶元素小于当前元素){栈顶元素…

单调队列和单调栈详解

这里是我的blog&#xff1a;有更多算法分享。排版可能也会更好看一点v https://endlesslethe.com/monotone-queue-and-stack-tutorial.html 前言 单调栈和单调队列算是栈和队列的高级应用吧&#xff0c;在公司面试中应该是不怎么会出现的&#xff08;除非算法岗&#xff1f;…

什么是单调栈

什么是单调栈 单调栈就是单调递增或者单调递减的栈&#xff0c;也就是栈底到栈顶递增或递减&#xff0c;根据单调栈的的这种结构&#xff0c;可以很容易想到运用单调栈可以很容易的把O(n)的时间复杂度优化到O(n),如果使用数组的话&#xff0c;相对的空间复杂度也不会太高 示例 …

Java实现之单调栈

目录 一.单调栈 二.每日温度 1.题目描述 2.问题分析 3.代码实现 三.下一个更大元素 I 1.题目描述 2.问题分析 3.代码实现 四.下一个更大元素 II 1.题目描述 2.问题分析 3.代码实现 一.单调栈 通常是一维数组&#xff0c;要寻找任一个元素的右边或者左边第一个比自…

[数据结构]单调栈

单调栈 这是笔者的第一篇博客&#xff0c;由于笔者自身水平的限制。用词可能不够准确&#xff0c;句子不太通顺&#xff0c;代码水平可能也不太行&#xff0c;敬请指出&#xff0c;感激不尽&#xff01; 我们都知道栈&#xff08;Stack&#xff09;是一种先入后出的数据结构&am…

单调栈和单调队列

本文摘自博客&#xff0c;欢迎前往博客以获得更好的体验。 单调栈 从名字上就听的出来&#xff0c;单调栈中存放的数据应该是严格单调有序的&#xff0c;具有以下两个性质。 满足从栈顶到栈底的元素具有严格的单调递增或单调递减性&#xff1b;满足栈的后进先出特性&#xff…

数据结构之单调栈(含代码实现)

目录 1.单调栈的基本概念 &#xff1a; 2.单调栈的应用 2.1单调栈 2.2单调栈进阶 2.3最大矩形面积 2.4最大矩形 2.5统计全为1的子矩阵数量 ​ 1.单调栈的基本概念 &#xff1a; 相信大家对栈都非常的熟悉&#xff1f;栈有一个非常鲜明的特点&#xff1a;先进后出 而所谓 单调栈…

C++之单调栈

单调栈的性质 单调栈是一种特殊的栈&#xff0c;特殊之处在于栈内的元素都保持一个单调性。 假设下图是一个栈内元素的排列情况(单调递增的栈)&#xff1a; 此时插入情况有两种&#xff1a; &#xff08;1&#xff09;插入元素大于栈顶元素&#xff1a; 因为7 > 6&#xf…

单调栈以及单调栈的应用

文章目录 单调栈的概念单调栈的应用CD101 单调栈结构&#xff08;无重复值&#xff09;CD188 单调栈结构(有重复值)496. 下一个更大元素 I739. 每日温度1856. 子数组最小乘积的最大值84. 柱状图中最大的矩形85. 最大矩形1504. 统计全 1 子矩形907. 子数组的最小值之和1307 验证…

单调栈完全解析

目录 单调栈的应用场景 为什么要使用单调栈&#xff1f; 单调栈作用的基本过程 单调栈的实现方式 栈里面的元素存放数字下标&#xff08;无重复元素&#xff09; 栈里面的元素存放数字下标组成的链表 &#xff08;有重复元素&#xff09; 单调栈的应用题目 直方图类型 …

单调栈与单调队列

文章目录 单调栈与单调队列一、单调栈1.单调递增栈2.单调递减栈总结 二、单调队列(单调双端队列) 单调栈与单调队列总结&#xff1a; 单调栈与单调队列 单调栈就是栈内元素满足单调性的栈结构。此处的单调性分为单调递增与单调递减 如何维护一个单调栈&#xff1a; 单调递增栈…

详解单调栈算法

前言 嘿&#xff01;彩蛋&#xff01;感觉有帮助就三连呗&#xff01; 如果你对这篇文章可感兴趣&#xff0c;可以点击「【访客必读 - 指引页】一文囊括主页内所有高质量博客」&#xff0c;查看完整博客分类与对应链接。 栈属于基础数据结构之一&#xff0c;基础到仅用「后进…

单调栈

定义&#xff1a; 单调栈&#xff0c;顾名思义就是栈内元素单调按照递增(递减)顺序排列的栈。 单调递增栈&#xff1a; ①在一个队列中针对每一个元素从它右边寻找第一个比它小的元素 ②在一个队列中针对每一个元素从它左边寻找第一个比它小的元素 单调递减栈&#xff1a; …

单调栈(C/C++)

目录 1. 单调栈的定义 2. 单调栈的常见用途 3. 案例分析 3.1 暴力解法 3.2 单调栈 4. 单调栈总结 1. 单调栈的定义 单调栈顾名思义&#xff0c;就是栈内的元素是单调的。根据栈内元素的单调性的不同&#xff0c;可以分为&#xff1a; 单调递增栈&#xff1a;栈内元素是单…

【算法】单调栈

目录 单调栈的定义&#xff1a;伪代码&#xff1a;应用1.模板题2.视野总和问题3.柱状图中的最大矩形4.最大区间 碎碎念&#xff1a; 单调栈的定义&#xff1a; 从名字上就能猜出来&#xff0c;这种数据结构在栈的基础上&#xff0c;栈内的元素是单调有序的&#xff0c;所以单调…