数学建模-微分方程模型

article/2025/10/10 18:21:09

引用:https://wenku.baidu.com/view/35ea8f8a2dc58bd63186bceb19e8b8f67c1cef82.html?rec_flag=default&sxts=1547780910061

微分方程建模是数学建模的重要方法,因为许多实际问题的数学描述将导致求解微分方程的定解问题。把形形色色的实际问题化成微分方程的定解问题,大体上可以按以下几步:

  1. 根据实际要求确定要研究的量(自变量、未知函数、必要的参数等)并确定坐标系。
  2. 找出这些量所满足的基本规律(物理的、几何的、化学的或生物学的等等)。
  3. 运用这些规律列出方程和定解条件。

列方程常见的方法有:
(i)按规律直接列方程
在数学、力学、物理、化学等学科中许多自然现象所满足的规律已为人们所熟悉,并直接由微分方程所描述。如牛顿第二定律、放射性物质的放射性规律等。我们常利用这些规律对某些实际问题列出微分方程。
(ii)微元分析法与任意区域上取积分的方法
自然界中也有许多现象所满足的规律是通过变量的微元之间的关系式来表达的。对于这类问题,我们不能直接列出自变量和未知函数及其变化率之间的关系式,而是通过微元分析法,利用已知的规律建立一些变量(自变量与未知函数)的微元之间的关系式,
然后再通过取极限的方法得到微分方程,或等价地通过任意区域上取积分的方法来建立微分方程。
(iii)模拟近似法
在生物、经济等学科中,许多现象所满足的规律并不很清楚而且相当复杂,因而需要根据实际资料或大量的实验数据,提出各种假设。在一定的假设下,给出实际现象所满足的规律,然后利用适当的数学方法列出微分方程。在实际的微分方程建模过程中,也往往是上述方法的综合应用。不论应用哪种方法,通常要根据实际情况,作出一定的假设与简化,并要把模型的理论或计算结果与实际情况进行对照验证,以修改模型使之更准确地描述实际问题并进而达到预测预报的目的。

微分方程的数学解法:积分法  分离变量法

典型例题

数学模型案例一

复杂数学模型


http://chatgpt.dhexx.cn/article/9592fN7h.shtml

相关文章

18.微分方程模型

微分方程模型 1.应用matlab求解微分方程模型 2.例题 1) dsolve(Du1u^2,t)2) ydsolve(Dyexp(x),y(0)exp(1),x); ezplot(y,[-10,10])3) ydsolve(D2y4*Dy29*y0,y(0)0,Dy(0)15,x); ezplot(y,[1,4])4) [x,y,z]dsolve(Dx2*x-3*…

数学建模:微分方程模型— Python 求解

目录 例:使用显式欧拉法和四阶龙格库塔法计算Lorenz模型scipy.integrate.odeint 求解微分方程模型scipy.integrate.solve_ivp 求解微分方程模型 使用 Python 求常微分方程的数值求解通常是基于一阶方程进行的,高阶微分方程要化成一阶方程组。 例&#x…

数学建模预测方法之 微分方程模型

微分方程模型 短、中、长期的预测都适合。 反应事物内部规律及其内在关系,但由于方程的建立是以局部规律的独立性假定为基础,当作为长期预测时,误差较大,且微分方程的解比较难以得到。 具体案例 传染病的预测模型、经济增长&a…

常见的微分方程模型(1)

学习了几个常见的微分方程模型,比如传染病模型和经济增长模型 1.传染病模型 已知已感染人数(病人)的比例为 i(t) ,假设每个病人每天的有效接触的人数为,在一块封闭区域内,总人数为N ,健康人的…

微分方程模型的求解方法

微分方程模型的求解方法 在实际问题中经常需要寻求某个变量y随另一变量t的变化规律,yy(t)这个函数关系式常常不能直接求出。然而有时容易建立包含变量及导数在内的关系式,即建立变量能满足的微分方程,从而通过求解微分方程对所研究的问题进行解释说明。…

微分方程模型_天生一对,硬核微分方程与深度学习的「联姻」之路

微分方程真的能结合深度神经网络?真的能用来理解深度神经网络、推导神经网络架构、构建深度生成模型?我们将从鄂维南、董彬和陈天琦等研究者的工作中,窥探微分方程与深度学习联袂前行的路径。 近日,北京智源人工智能研究院开展了第…

微分方程模型——偏微分方程

1. 简介 微分方程:描述自然界中存在的物理现象和普遍规律。 常微分方程(ODE)偏微分方程(PDE) 偏微分方程理论: 物理/工程问题————翻译(建模)/物理工程规律————》数学问题…

数学建模——微分方程模型的求解

文章目录 微分方程的符号解法微分方程数值解法一些常用的微分方程模型(学习中,持续更新)Logistics模型传染病模型 本文介绍微分方程的求解,不介绍微分方程的建立方法 微分方程的符号解法 求解微分方程的符号解主要是依赖于Python…

微分方程模型_常微分方程模型简介

注:本文是刘然对常微分方程模型的简介 什么是常微分方程模型 常用的回归分析聚焦于直接建立响应变量和协变量之间的关系,之后根据建立的模型进行分析和预测,比如常见的线性回归模型:。 而如果我们感兴趣的变量是随时间变化的,那么还有另外一种常用的建模方式:建立变量与变…

数学建模【微分方程模型(介绍、分析方法、数值模拟、传染病问题的建模和分析、经济增长模型、人口增长预测和控制模型)】

🚀【MOOC数学建模与实验---学习笔记---整理汇总表】🚀 🌈【学习网址:MOOC---郑州轻工业大学---数学建模与实验】🌈 【第1、2章】【概述、软件介绍】【第3章】【数据处理方法】【第4章】【规划模型】【第5章】【图与网络…

数学建模理论自制笔记1:微分方程及其模型

1、微分方程基础概念: 微分方程:含有自变量、未知函数及未知函数的导数或微分的等式,其定义式为;常微分方程(Ordinary Differential Equations, ODE):不含偏导数或偏微分的微分方程&#xff0c…

微分方程模型

微分方程模型简介 在研究生物、经济等学科的实际问题时,常常会联系到某些变量的变化率或导数,这样所得到变量之间的关系式就是微分方程。微分方程反映的是变量之间的间接关系,因此,要得到直接关系,就得求解微分方程。…

【数学建模】常用微分方程模型 + 详细手写公式推导 + Matlab代码实现

文章目录 一、学习内容二、学习时间三、学习产出3.1 微分方程基本概念3.2 微分方程在数学建模中的应用3.3 微分方程常用模型3.3.1 人口增长模型3.3.1.1 指数增长模型(马尔萨斯模型)3.3.1.2 阻滞增长模型(Logistic模型)3.3.1.3 人口模型小结 3.3.2 传染病模型3.3.2.1 SI模型3.3.…

数学建模之微分方程模型详解

全文共10110个字,码字总结不易,老铁们来个三连:点赞、关注、评论 作者:[左手の明天] 原创不易,转载请联系作者并注明出处 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议&#xff0c…

Station P2(ROC-RK3568-PC) 裸机开发5_RKUBoot TPL

完整编译 u-boot-next-dev:./make.sh rk3568 2>&1 >log.txt 生成两个主要的文件是: RKLoader:rk356x_spl_loader_v1.08.111.bin Uoot FIT Image:uboot.img 两个都是有特定格式的混合文件。 RKLoader 的生成&#xf…

tpl怎么搞_emlog后台模板设置功能插件tpl_options

到目前为止emlog都没有集成模板后台设置功能,可能是和emlog一直走轻量级路径有关。但是集成模板后台配置功能,无论是对emlog模板开发者还是用户来说,其作用都非常大,可以使一些模板功能不需要修改模板文件就可以改变设置&#xff…

tpl.js的使用

tpl.js的使用 tpl.js简介1.如何写模板2.如何引用模板tpl.js的下载地址 tpl.js简介 tpl.js是用于和require.js相结合的html模板,和template.js的用法非常相似,我们可以从以下几点来学习它,我们先来看一下小案例中的目录结构: 1.如何写模板 …

vscode配置tpl文件关联html语言

使用beego框架的时候,有个操作,需要将tpl文件修改vscode识别成html; 有两种方法: 方法一:页面配置 ctrl shift p 选择打开工作区设置 找到Files:Associations文件关联 添加项:*.tpl html 方法二&…

基于JAVA的TPL解释器

基于JAVA的TPL解释器 编写一个Java程序,该程序读取一个文件中的TPL指令(见下文),并执行这些指令。该语言编写的程序每一行都必须以这些单词中的一个开头,不区分大小写。具体代码可参考链接 https://download.csdn.net…

U-Boot 之零 源码文件、启动阶段(TPL、SPL)、FALCON、设备树

最近,工作重心要从裸机开发转移到嵌入式 Linux 系统开发,在之前的博文 Linux 之八 完整嵌入式 Linux 环境、(交叉)编译工具链、CPU 体系架构、嵌入式系统构建工具 中详细介绍了嵌入式 Linux 环境,接下来就是重点学习一…