线性插值和双线性插值

article/2025/10/2 17:32:18

最近在学数字图像处理中旋转变换的问题,发现旋转以后图片有一些不连续点,于是试着用双线性插值法进行解决。下面就介绍下插值的原理:

线性插值

如果你只处理分离的数据、想知道分离点之间的某些值,需要用到某种类型的插值。这种情况如图5-17坐标所示。对某些分离的(整数) X值,你知道Y值。当X=2,你知道Y=10,X=3时Y=30。但你不知道X=2.7时的Y值。

图5-17

                                                                                      图1线性插值:简单常规的例子

使用线性插值,你通过连接两点的线段找到X=2.7对应的Y值,如图1所示。使用线性插值,通过连接两点的线段找到X=2.7对应的Y值。线性插值总是将X表达成0和1之间,0对应X的最小值(你知道对应的Y值,本例中为2),1对应X的最大值(本例中为3) 。本例中你想找到X=2.7时的Y值,结果是0.7,意思是“2和3至之间的70%。”

在图1的左图中,0%对应Y值10,100%对应Y值20,所以70%对应Y=17。这很容易看出,但右图的情况如何?14对应0.33,因为它是13和16之间的33%。但35和46之间的33%是多少?显然,你希望有代码可以为你计算结果。

首先要有代码找到0和1对应的值。从X值开始,首先减去最小的X值,这样最小值变为0。然后,将最大值缩放为1,你可以通过将它除以最大值和最小值之差实现。

下面是图1左图的做法: 2.7→(2.7-min)/(max-min)=(2.7-2)/(3-2)=0.7

然后,进行逆运算获取对应的Y值:首先缩放这个值(通过乘以最大值和最小值的差值),并加到最小的Y值上:

0.7* (maxY-min Y)+minY=0.7*(20-10)+10=0.7*10+10=17

这里你采取图1左图简单例子的规则,但你可以使用这个方法计算任何线性插值。看一下图1右图更难的例子,在这种情况中,你知道X=13对应Y=35,X=16对应Y=46,但你想知道X=14对应的Y值。所以,首先获取0和1之间对应的值:

14→(14-minX)/(maxX-minX) =(14-13)/(16-13)=0.33

知道了对应值,就做好了获取对应Y值的准备:

0.33* (maxY-minY)+minY=0.33*(46-35)+35=0.33*11+35=3.67+35=38.67

最后,需要进行浮点计算。图5-17的右图中找到X=1


http://chatgpt.dhexx.cn/article/xjfhZEf8.shtml

相关文章

没想到会用到:线性插值(Linear Interpolation)原理及使用

各位博友们大家好,小弟遇到一些问题经常会去看大家的博客,所以也想加入大伙的阵营,每每看到一些好的东西,有些心得体会什么的也想与大伙分享。 1.关于插值 插值,它根据已知的数据序列(也可以理解为坐标中一…

线性插值 多项式插值 样条插值 牛顿插值总结

项目github地址:bitcarmanlee easy-algorithm-interview-and-practice 欢迎大家star,留言,一起学习进步 1.什么是插值 在数值分析中,插值(interpolation)是一种通过已知的、离散的数据点,在范围内推求新数据点的过程…

常用线性插值的介绍和应用(双线性插值,三线性插值,平滑曲线插值)

常用线性插值的介绍和应用 线性插值 插值是计算机图形学中非常常用的技术。通常,数据是在常规网格上指定的(值写在2D或3D网格的顶点位置)或在线上(在一维的情况下),但是程序需要在该网格上的随机位置求值。…

线性插值 np.interp()

线性插值是指插值函数为一次多项式的插值方式,其在插值节点上的插值误差为零。线性插值相比其他插值方式,如抛物线插值,具有简单、方便的特点。线性插值的几何意义即为概述图中利用过A点和B点的直线来近似表示原函数。 线性插值法是认为现象…

我与插值萍水相逢:线性插值(Linear Interpolation)原理及使用

各位博友们大家好,小弟遇到一些问题经常会去看大家的博客,所以也想加入大伙的阵营,每每看到一些好的东西,有些心得体会什么的也想与大伙分享。 1.关于插值 插值,它根据已知的数据序列(也可以理解为坐标中一…

对线性插值的理解

【插值】 插值是用已知点求未知点的一种方法,而且通常是用两个已知点求一个未知点。(如果是用很多已知点求未知点一般用曲线拟合) 既然是用两个已知点求一个未知点,那么两个已知点之间的距离要尽可能的小,这样求出来…

python判断是否为数字类型_python判断字符串是否为数字

以下实例通过创建自定义函数 is_number() 方法来判断字符串是否为数字:# -*- coding: UTF-8 -*- # Filename : test.py # author by : www.runoob.com def is_number(s): try: float(s) return True except ValueError: pass try: import unicodedata unicodedata.…

使用正则表达式判断字符串是否为数字类型

java 判断字符串是否是数字 1.用JAVA自带的函数 publicstaticbooleanisNumeric(Stringstr){ for(inti0;i System.out.println(str.charAt(i)); if(!Character.isDigit(str.charAt(i))){ returnfalse; returntrue; 2.用正则表达式 首先要importjava.util.regex.Pattern和java.ut…

java判断字符串是否为数字

一:判断java中的字符串是否为数字,可以通过正则表达式来判断;其判断逻辑如下: 1、根据阿里巴巴代码规范,将Pattern设置为全局常量,通过 -?[0-9](\\\\.[0-9])? 进行匹配是否为数字 private static final P…

二次型化为标准型

将二次型化为标准形有利于我们了解二次型的简单形式、二次型的各种参数如正负惯性指数、得到二次型的规范形、对称矩阵合同的简单形等等。另外,化标准形也是解析几何化简二次曲线和二次曲面的需要。 下面,我们以两道题目为例说明计算二次型的标准形的2种…

二次型的标准型、规范型

若二次型只有平方项,则称二次型为标准型 如果标准型中,系数只有1,-1和0,那么称为二次型的规范型,因为标准型中,1,-1,0的个数是由正负惯性指数决定的,而合同的矩阵正负惯…

二次型,正定二次型

二次型:含有n个变量 x 1 , x 2 , . . . x n x_1,x_2,...x_n x1​,x2​,...xn​的二次齐次函数: f ( x 1 , x 2 , . . . x n ) a 11 x 1 2 a 12 x 1 x 2 a 13 x 1 x 3 a 14 x 1 x 4 . . . a 1 n x 1 x n f(x_1,x_2,...x_n)a_{11}x_1^2a_{12}x_1x_2a_{13}x_1x_3…

二次型的正定

实数二次型的类型 设为一个实二次型,若 自变量不全为0 若恒成立,则称f为一个正定二次型,称A为正定矩阵 若恒成立,则称f为一个半正定二次型,称A为半正定矩阵 若恒成立,则称f为一个负定二次型&#xff0…

线性代数-二次型及其正定性

二次型及其矩阵表示形式 二次型:含有n个变量的二次齐次多项式 二次型矩阵:xTAx,其中A为实对称矩阵 任给一个实二次型,就唯一确定一个实对称矩阵;反之,任给一个实对称矩阵,也可以唯一确认一个实二次型,因此,实二次型与实对称矩阵之间存在一一对应关系,称实对称矩阵A为二次型f的…

【考研线代】六. 二次型

文章目录 第六章 二次型6.1 二次型及其标准形6.1.1 概念6.1.2 合同基本性质6.1.3 题型 6.2 正定二次型6.2.1 概念6.2.2 定理 6.3 补充:解题技巧6.3.1 惯性定理的理解6.3.2 矩阵合同的充要条件6.3.3 配方法的坐标变换必须可逆6.3.4 正交变化化标准型 (&am…

线性代数(10):二次型

一、二次型 (1)定义 含有 n 个变量 x1,x2,…… ,xn 的二次齐次函数称为二次型; 对称矩阵 A 的秩也叫做二次型 f 的秩; (2) 例: 排列二次型 所对应的矩阵 …

二次型化标准形的三种方法

二次型化标准形的三种方法 将二次型化为标准形有利于我们了解二次型的简单形式、二次型的各种参数如正负惯性指数、得到二次型的规范形、对称矩阵合同的简单形等等。另外,化标准形也是解析几何化简二次曲线和二次曲面的需要。 下面,我们以两道题目为例…

二次型化标准形的五种方法

文章目录 1. 配方法2. 初等变换法3. 正交变换法4. 偏导数法5. 顺序主子式法 1. 配方法 用配方法化二次型为标准形的关键是消去交叉项,分如下两种情况: 情形1:如果二次型 f ( x 1 , x 2 , x 3 , ⋯ , x n ) {f \left( x\mathop{{}}\nolimits…

区别:二次型、标准形、规范形

文章目录: 一:二次型 二次型衔接 合同和相似 二:标准形 二次型化为标准形 1.配方法 2.正交变换法 三:规范形 标准形:不唯一规范形:唯一 一:二次型 二次型:对称矩阵 A&#…

速通二次型、二次型标准型、二次型规范型

浅过二次型 理解二次型可以从二次型的多项式入手: 显然,在系数都为实数的情况下,二次型矩阵即为一个实对称矩阵。 取一个代入值的例子就是: 二次型的标准型 OK,再从二次型的标准型的多项式入手,如下&…