贝叶斯分析——分布之分布(beta分布)

article/2025/10/15 16:42:37

转自:http://blog.sciencenet.cn/blog-677221-1049350.html

贝叶斯与逆概率问题

对于“白球黑球”的概率问题。概率问题可以正向计算,也能反推回去。

(1)盒子里有10个球,黑白两种颜色,如果我们知道10个球中5白5黑,那么,从中随机取出一个球,这个球是黑球的概率是多大?

(2)假设我们预先并不知道盒子里黑球白球数目的比例,只知道总共是10个球,那么,随机地拿出3个球,发现是2黑1白。逆概率问题则是要从这个试验样本(2黑1白),猜测盒子里白球黑球的比例?

贝叶斯感兴趣的是反过来的问题(可称之为逆概率问题)逆概率问题,就是从样本数据来猜测概率模型的参数

为了解决逆概率问题,贝叶斯在他的论文中提供了一种方法,即贝叶斯公式:

后验概率 = 观测数据决定的调整因子×先验概率    (1)

根据贝叶斯公式,利用先验知识与观察数据一起,可决定假设的最终概率,以允许对某种不确定性逐步调整后验概率并做出最终的概率预测。

分布之分布

虽然大家都可以使用贝叶斯公式,但使用的方法却可以五花八门,一是确定先验概率的方法便有多种多样,二是要对未知的不确定性作出预测,那么,如何理解这种“不确定性”?这种不确定性是固有的客观存在吗?

比如说抛硬币实验,每次实验可以用随机变量X表示,X服从二项分布或伯努利分布。如何“猜测”抛硬币时正面出现的概率p?(1)频率学派认为模型参数p是固定的客观存在的

         频率学派对于p的估计:

        频率学派认为p有一个固定数值,也就自然而然地认为决定这个数值的比较好的方法就是多次试验,不停地抛硬币,记录其中正面出现的频率,实验次数足够大的时候,就能越来越逼近p的真实数值,比如说,抛了1000次,正面601次,得到频率p(1000)=0.601,大概可以预测p=0.6。

(2)贝叶斯学派则把模型的参数p也当作一个不确定的随机变量P,认为它符合某种分布。所以,对贝叶斯学派而言,硬币实验中有两类随机变量:硬币“正反”的一类随机变量X,和表征硬币偏向性的另一类随机变量P。因为P是建立在随机序列X的模型参数之上的随机序列,因此,其分布被称为“分布之分布”。

        贝叶斯学派对于p的估计:

        贝叶斯学派并不假定p有一个“客观”数值,而是认为p也对应一个随机变量Y,可以取0到1之间的任何值,但可能服从某种分布(均匀、正态、或其它),实验次数的增多可以对此分布的情况了解更多。这样一来,使用贝叶斯公式,便可以逐次修正Y对应的分布:

               后验概率分布 = 观测数据决定的调整因子×先验概率分布      

         将上式表达得稍微“数学”一点:

               P(Y|数据)   =    {P(数据| Y) / P(数据)} * P(Y)  =   似然函数* P(Y)                               (2)

               P(数据)可以暂不考虑,以后会放到概率的归一化因子中。

Beta分布

公式(2)中的P(Y)是先验分布,P(Y|数据) 是考虑得到了更多数据条件下的后验分布,P(数据| Y)是(正比于)似然函数。

以简单的“抛硬币”实验为例,首先研究一下似然函数。对硬币“正反”随机性X对应的二项离散变量,事件要么发生(p),要么不发生(1-p)。如果发生m次,不发生n次,似然函数的形式为:

Pm(1-p)n

如果我们能找到一种分布形式来表示先验分布,乘以似然函数后,得到的后验分布仍然能够保持同样的形式的话,便不仅具有代数公式的协调之美,也会给实际上的计算带来许多方便之处。

很幸运,beta分布就具有我们要求的性质。具有上述性质的分布叫做“共轭先验”,beta分布是二项分布的共轭先验:

f(x; a, b) =xa-1(1-x)b-1/B(a,b)                       (3)

beta分布用f(x;a,b)表示,其中的B(a,b)是通常的由gamma函数定义的beta函数,在这儿意义不大,只是作为一个归一化的常数而引进,以保证概率求和(或积分)得到1。

简单举例

事实上,仅仅从硬币物理性质的角度来看,频率学派的观点似乎言之有理。硬币正反面的偏向性显然是一种固定的客观存在。但是,除此之外,还有很多其它不确定性的情况,就不见得符合这种“参数固定”的模型了,比如量子现象是其中1例。下面再举一个简单例子:

用简单的“雨”或“无雨”来表示某城市气候中的“雨晴”状态。该城市已经有了10天的“雨晴”记录,其中3天有雨,7天无雨,因而可以由此记录得到一个beta先验分布:f(雨; 3, 7)。

然后,再过了8天之后,观测到了新的数据:其中7天有雨1天无雨,后验概率仍然是一个beta分布,不过参数有所改变:f(雨; 10, 8),见下图。


http://chatgpt.dhexx.cn/article/x8A46HHc.shtml

相关文章

Beta分布(Beta Distribution)

定义: beta分布可以看作一个概率的概率分布,当你不知道一个东西的具体概率是多少时,它可以给出了所有概率出现的可能性大小。 举一个简单的例子,熟悉棒球运动的都知道有一个指标就是棒球击球率(batting average),就是…

推导Beta分布公式

Beta分布可以用于拟合各种不同的分布,网上各种资料对于Beta分布的原理着墨较多,却少有推导Beta分布公式的,所以,推导Beta分布公式如下: 设一组随机变量 ,将这n个随机变量排序后得到顺序统计量 &#xff0c…

Beta 分布

Beta 函数 B ( α , β ) ≜ ∫ 0 1 x α − 1 ( 1 − x ) β − 1 d x \Beta(\alpha, \beta) \triangleq \int_0^1 x^{\alpha-1}(1-x)^{\beta-1}dx B(α,β)≜∫01​xα−1(1−x)β−1dx 其中 α , β > 0 \alpha, \beta > 0 α,β>0 Beta 函数与 Gamma 函数 B ( α…

如何理解beta分布?

相信大家学过统计学的都对 正态分布 二项分布 均匀分布 等等很熟悉了,但是却鲜少有人去介绍beta分布的。 用一句话来说,beta分布可以看作一个概率的概率分布,当你不知道一个东西的具体概率是多少时,它可以给出了所有概率出现的可…

原创 | 一文读懂正态分布与贝塔分布

本文约2300字,建议阅读5分钟 本文通过案例介绍了正态分布和贝塔分布的概念。 正态分布 正态分布,是一种非常常见的连续概率分布,其也叫做常态分布(normal distribution),或者根据其前期的研究贡献者之一高斯的名字来称…

带你理解beta分布

#beta分布介绍 相信大家学过统计学的都对 正态分布 二项分布 均匀分布 等等很熟悉了,但是却鲜少有人去介绍beta分布的。 用一句话来说,beta分布可以看作一个概率的概率分布,当你不知道一个东西的具体概率是多少时,它可以给出了所…

深入理解什么是Beta分布

例一 Beta分布是一种描述概率的概率分布,这句话可能有些绕口,看一个例子: 以抛硬币为例,如果硬币是均匀的,并且正面朝上的概率记为p(p0.5),那么每一次抛硬币都可以看做是一次伯努利…

贝塔分布(beta分布)及Python实现——计算机视觉修炼之路(二)

beta分布 贝塔分布( Beta Distribution ) 是一个作为伯努利分布和二项式分布的共轭先验分布的密度函数,在机器学习和数理统计学中有重要应用。在概率论中,贝塔分布,是指一组定义在(0,1)区间的连续概率分布。其概率密度函数为&…

Beta分布(概率的概率)

目录 1.前言 2.定义 3.Beat分布的概率密度函数(PDF): 4.Beat分布的累积密度函数(CDF): 1.前言 伯努利试验(同样的条件下重复地、相互独立地进行的一种随机试验,其特点是该随机试验…

伽马分布与 贝塔分布

伽马函数 称 为伽马函数,其中参数 ,伽马函数具有如下性质: ,n为自然数;或写作 余元公式:对于 ,有 与贝塔函数 的关系 : 对于 ;伽马函数是严格凹函数。x足够大时,可以用Stirling 公式来计算Gam…

贝塔、伽马分布

最近开始自学PRML,为此又补了概率论中的一些知识点。 相较于古典概率通过各种估计手段来确定参数的分布,贝叶斯学派则是使用后验概率来确定,为了方便计算后验概率,引入共轭先验分布来方便计算,这是后话了。 那么一些…

贝塔分布

B e t a Beta Beta分布 众所周知,当一个随机变量 Y Y Y的密度函数如下所示时,称这个变量 Y Y Y满足 B e t a ( a , b ) Beta(a,b) Beta(a,b)分布: f ( y ) y a − 1 ( 1 − y ) b − 1 ∫ 0 1 y a − 1 ( 1 − y ) b − 1 d y y a − 1 (…

数据科学分布——Beta分布

Beta分布 概念参数影响数量比例 随机产生数据概率密度函数累积概率密度函数 概念 贝塔分布(Beta Distribution) 是一个作为伯努利分布和二项式分布的共轭先验分布的密度函数,在机器学习和数理统计学中有重要应用。在概率论中,贝塔分布&#…

Beta分布及其应用

贝塔分布(Beta Distribution)是一个连续的概率分布,它只有两个参数。它最重要的应用是为某项实验的成功概率建模。在本篇博客中,我们使用Beta分布作为描述。 原文地址:http://www.datalearner.com/blog/1051505532393…

机器学习中的数学——常用概率分布(十):贝塔分布(Beta分布)

分类目录:《机器学习中的数学》总目录 相关文章: 常用概率分布(一):伯努利分布(Bernoulli分布) 常用概率分布(二):范畴分布(Multinoulli分布&am…

NLPIR分词系统的使用

前身是2000年发布的ICTCLAS,2009年更为现名。张华平博士打造。 Java课设做自动问答系统,用到了,所以记录一下使用方法,网上方法可能有点老,所以自己发现没有那么复杂。 https://github.com/NLPIR-team/NLPIR 上下载源…

分词系统

ICTClAS分词系统是由中科院计算所的张华平、刘群所开发的一套获得广泛好评的分词系统,难能可贵的是该版的Free版开放了源代码,为我们很多初学者提供了宝贵的学习材料。 但有一点不完美的是,该源代码没有配套的文档,阅读起来可能有…

中科院分词ICTCLAS汉语分词系统简单配置

汉语分词一直来说都是进行文本分析的瓶颈,这里介绍一个汉语分词系统ICTCLAS,全球很受欢迎的汉语分词开源系统,曾获得首界国际分词大赛综合排名第一,国家973评测第一名;支持词典,多级词性标注,支…

智能语言-中科院分词系统ICTCLAS(NLPIR)

智能语言的处理中,第一个步骤就是分词。一个句子处理的第一步就是分词了,目前而言中文分词中效果最好的就是中科院分词系统。在2014版本以及之前称为ICTCLAS,之后的版本都更名为NLPIR。 我给出一个最简单的使用教程,能够帮助新手…

NLPIR(北理工张华平版中文分词系统)的SDK(C++)调用方法

一、本文内容简介 关于中文分词的基本概念关于NLPIR(北理工张华平版中文分词系统)的基本情况具体SDK模块(C版)的组装方法 二、具体内容 1. 中文分词的基本概念 中文分词是自然语言处理的一个分支,自然语言即人们在日常生活中使用的语言,包含书面语,口…