PyTorch 实现Image to Image (pix2pix)

article/2025/8/26 22:25:48

目录

一、前言

二、数据集

三、网络结构

四、代码

     (一)net

     (二)dataset

     (三)train

     (四)test

五、结果

    (一)128*128

    (二)256*256       

六、完整代码


一、前言

        pix2pix可以实现画风迁移、图片修复、语义分割、图片上色等等。这里主要实现将facades labels转换成真实图片。由于源码中涉及的功能较多,代码较为复杂,这里我将主要部分拿了出来并做了一些小修改。

        在传统的GAN中,生成器G的输入是噪声z,目的是让G去学习一种分布去拟合真实数据的分布。而在pix2pix中,G的输入是facades labels,生成器G一方面要尽可能生成真的图片去骗过D,另一方面要使输出尽可能去逼近facades labels对应的真实图片(利用了L1loss)。G的噪声是通过在网络的dropout层引入的(如果不引入噪声,那么最终训练的G只会逼近已有的训练样本,无法拟合真实数据的分布)  。

        pix2pix中判别器D采用了PatchGAN,即D不仅仅只对整张图的真假打分,而是将图片最终分成多个patch,对每个patch进行打分,D只有当图片与fecades labels匹配并且尽可能逼近真实样本时候才会打高分。

二、数据集

        数据集采用的是facades数据集,训练样本是成对匹配的(其中fecades图片均以png格式存储,对应真实样本以jpg存储),共有606张图片,训练过程中将数据集按8:2的比例划分训练集和验证集。部分图像对如下图所示。

三、网络结构

        生成器G采用了Unet结构,本质为encoder-decoder,网络结构如下图所示(这里以输入图片为256*256为例)。dropout层只在输入输出channel都为512时候才有。

         判别器D其实就是简单的卷积神经网络,网络结构如下图所示。

四、代码

     (一)net

        这里提供了输入为128*128和256*256两种结构的网络

import torch.nn as nn
import torch
from collections import OrderedDict# 定义降采样部分
class downsample(nn.Module):def __init__(self, in_channels, out_channels):super(downsample, self).__init__()self.down = nn.Sequential(nn.LeakyReLU(0.2, True),nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(out_channels))def forward(self, x):return self.down(x)# 定义上采样部分
class upsample(nn.Module):def __init__(self, in_channels, out_channels, drop_out=False):super(upsample, self).__init__()self.up = nn.Sequential(nn.ReLU(True),nn.ConvTranspose2d(in_channels=in_channels, out_channels=out_channels, kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(out_channels),nn.Dropout(0.5) if drop_out else nn.Identity())def forward(self, x):return self.up(x)# ---------------------------------------------------------------------------------
# 定义pix_G  =>input 128*128
class pix2pixG_128(nn.Module):def __init__(self):super(pix2pixG_128, self).__init__()# down sampleself.down_1 = nn.Conv2d(3, 64, 4, 2, 1)  # [batch,3,128,128]=>[batch,64,64,64]for i in range(7):if i == 0:self.down_2 = downsample(64, 128)  # [batch,64,64,64]=>[batch,128,32,32]self.down_3 = downsample(128, 256)  # [batch,128,32,32]=>[batch,256,16,16]self.down_4 = downsample(256, 512)  # [batch,256,16,16]=>[batch,512,8,8]self.down_5 = downsample(512, 512)  # [batch,512,8,8]=>[batch,512,4,4]self.down_6 = downsample(512, 512)  # [batch,512,4,4]=>[batch,512,2,2]self.down_7 = downsample(512, 512)  # [batch,512,2,2]=>[batch,512,1,1]# up_samplefor i in range(7):if i == 0:self.up_1 = upsample(512, 512)  # [batch,512,1,1]=>[batch,512,2,2]self.up_2 = upsample(1024, 512, drop_out=True)  # [batch,1024,2,2]=>[batch,512,4,4]self.up_3 = upsample(1024, 512, drop_out=True)  # [batch,1024,4,4]=>[batch,512,8,8]self.up_4 = upsample(1024, 256)  # [batch,1024,8,8]=>[batch,256,16,16]self.up_5 = upsample(512, 128)  # [batch,512,16,16]=>[batch,128,32,32]self.up_6 = upsample(256, 64)  # [batch,256,32,32]=>[batch,64,64,64]self.last_Conv = nn.Sequential(nn.ConvTranspose2d(in_channels=128, out_channels=3, kernel_size=4, stride=2, padding=1),nn.Tanh())self.init_weight()def init_weight(self):for w in self.modules():if isinstance(w, nn.Conv2d):nn.init.kaiming_normal_(w.weight, mode='fan_out')if w.bias is not None:nn.init.zeros_(w.bias)elif isinstance(w, nn.ConvTranspose2d):nn.init.kaiming_normal_(w.weight, mode='fan_in')elif isinstance(w, nn.BatchNorm2d):nn.init.ones_(w.weight)nn.init.zeros_(w.bias)def forward(self, x):# downdown_1 = self.down_1(x)down_2 = self.down_2(down_1)down_3 = self.down_3(down_2)down_4 = self.down_4(down_3)down_5 = self.down_5(down_4)down_6 = self.down_6(down_5)down_7 = self.down_7(down_6)# upup_1 = self.up_1(down_7)up_2 = self.up_2(torch.cat([up_1, down_6], dim=1))up_3 = self.up_3(torch.cat([up_2, down_5], dim=1))up_4 = self.up_4(torch.cat([up_3, down_4], dim=1))up_5 = self.up_5(torch.cat([up_4, down_3], dim=1))up_6 = self.up_6(torch.cat([up_5, down_2], dim=1))out = self.last_Conv(torch.cat([up_6, down_1], dim=1))return out# 定义pix_D_128    => input 128*128
class pix2pixD_128(nn.Module):def __init__(self):super(pix2pixD_128, self).__init__()# 定义基本的卷积\bn\reludef base_Conv_bn_lkrl(in_channels, out_channels, stride):return nn.Sequential(nn.Conv2d(in_channels, out_channels, 4, stride, 1),nn.BatchNorm2d(out_channels),nn.LeakyReLU(0.2))D_dic = OrderedDict()in_channels = 6out_channels = 64for i in range(4):if i < 3:D_dic.update({'layer_{}'.format(i + 1): base_Conv_bn_lkrl(in_channels, out_channels, 2)})else:D_dic.update({'layer_{}'.format(i + 1): base_Conv_bn_lkrl(in_channels, out_channels, 1)})in_channels = out_channelsout_channels *= 2D_dic.update({'last_layer': nn.Conv2d(512, 1, 4, 1, 1)})  # [batch,1,14,14]self.D_model = nn.Sequential(D_dic)def forward(self, x1, x2):in_x = torch.cat([x1, x2], dim=1)return self.D_model(in_x)# ---------------------------------------------------------------------------------
# 256*256
class pix2pixG_256(nn.Module):def __init__(self):super(pix2pixG_256, self).__init__()# down sampleself.down_1 = nn.Conv2d(3, 64, 4, 2, 1)  # [batch,3,256,256]=>[batch,64,128,128]for i in range(7):if i == 0:self.down_2 = downsample(64, 128)  # [batch,64,128,128]=>[batch,128,64,64]self.down_3 = downsample(128, 256)  # [batch,128,64,64]=>[batch,256,32,32]self.down_4 = downsample(256, 512)  # [batch,256,32,32]=>[batch,512,16,16]self.down_5 = downsample(512, 512)  # [batch,512,16,16]=>[batch,512,8,8]self.down_6 = downsample(512, 512)  # [batch,512,8,8]=>[batch,512,4,4]self.down_7 = downsample(512, 512)  # [batch,512,4,4]=>[batch,512,2,2]self.down_8 = downsample(512, 512)  # [batch,512,2,2]=>[batch,512,1,1]# up_samplefor i in range(7):if i == 0:self.up_1 = upsample(512, 512)  # [batch,512,1,1]=>[batch,512,2,2]self.up_2 = upsample(1024, 512, drop_out=True)  # [batch,1024,2,2]=>[batch,512,4,4]self.up_3 = upsample(1024, 512, drop_out=True)  # [batch,1024,4,4]=>[batch,512,8,8]self.up_4 = upsample(1024, 512)  # [batch,1024,8,8]=>[batch,512,16,16]self.up_5 = upsample(1024, 256)  # [batch,1024,16,16]=>[batch,256,32,32]self.up_6 = upsample(512, 128)  # [batch,512,32,32]=>[batch,128,64,64]self.up_7 = upsample(256, 64)  # [batch,256,64,64]=>[batch,64,128,128]self.last_Conv = nn.Sequential(nn.ConvTranspose2d(in_channels=128, out_channels=3, kernel_size=4, stride=2, padding=1),nn.Tanh())self.init_weight()def init_weight(self):for w in self.modules():if isinstance(w, nn.Conv2d):nn.init.kaiming_normal_(w.weight, mode='fan_out')if w.bias is not None:nn.init.zeros_(w.bias)elif isinstance(w, nn.ConvTranspose2d):nn.init.kaiming_normal_(w.weight, mode='fan_in')elif isinstance(w, nn.BatchNorm2d):nn.init.ones_(w.weight)nn.init.zeros_(w.bias)def forward(self, x):# downdown_1 = self.down_1(x)down_2 = self.down_2(down_1)down_3 = self.down_3(down_2)down_4 = self.down_4(down_3)down_5 = self.down_5(down_4)down_6 = self.down_6(down_5)down_7 = self.down_7(down_6)down_8 = self.down_8(down_7)# upup_1 = self.up_1(down_8)up_2 = self.up_2(torch.cat([up_1, down_7], dim=1))up_3 = self.up_3(torch.cat([up_2, down_6], dim=1))up_4 = self.up_4(torch.cat([up_3, down_5], dim=1))up_5 = self.up_5(torch.cat([up_4, down_4], dim=1))up_6 = self.up_6(torch.cat([up_5, down_3], dim=1))up_7 = self.up_7(torch.cat([up_6, down_2], dim=1))out = self.last_Conv(torch.cat([up_7, down_1], dim=1))return out# 256*256
class pix2pixD_256(nn.Module):def __init__(self):super(pix2pixD_256, self).__init__()# 定义基本的卷积\bn\reludef base_Conv_bn_lkrl(in_channels, out_channels, stride):return nn.Sequential(nn.Conv2d(in_channels, out_channels, 4, stride, 1),nn.BatchNorm2d(out_channels),nn.LeakyReLU(0.2))D_dic = OrderedDict()in_channels = 6out_channels = 64for i in range(4):if i < 3:D_dic.update({'layer_{}'.format(i + 1): base_Conv_bn_lkrl(in_channels, out_channels, 2)})else:D_dic.update({'layer_{}'.format(i + 1): base_Conv_bn_lkrl(in_channels, out_channels, 1)})in_channels = out_channelsout_channels *= 2D_dic.update({'last_layer': nn.Conv2d(512, 1, 4, 1, 1)})  # [batch,1,30,30]self.D_model = nn.Sequential(D_dic)def forward(self, x1, x2):in_x = torch.cat([x1, x2], dim=1)return self.D_model(in_x)

     (二)dataset

        split_data.py

import random
import globdef split_data(dir_root):random.seed(0)ori_img = glob.glob(dir_root + '/*.png')k = 0.2train_ori_imglist = []val_ori_imglist = []sample_data = random.sample(population=ori_img, k=int(k * len(ori_img)))for img in ori_img:if img in sample_data:val_ori_imglist.append(img)else:train_ori_imglist.append(img)return train_ori_imglist, val_ori_imglistif __name__ == '__main__':a, b= split_data('../base')

         mydatasets.py

from torch.utils.data.dataset import Dataset
import torchvision.transforms as transform
from PIL import Image
import cv2class CreateDatasets(Dataset):def __init__(self, ori_imglist,img_size):self.ori_imglist = ori_imglistself.transform = transform.Compose([transform.ToTensor(),transform.Resize((img_size, img_size)),transform.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])def __len__(self):return len(self.ori_imglist)def __getitem__(self, item):ori_img = cv2.imread(self.ori_imglist[item])ori_img = ori_img[:, :, ::-1]real_img = Image.open(self.ori_imglist[item].replace('.png', '.jpg'))ori_img = self.transform(ori_img.copy())real_img = self.transform(real_img)return ori_img, real_img

     (三)train

from torch.utils.tensorboard import SummaryWriter
from pix2Topix import pix2pixG_256, pix2pixD_256
import argparse
from mydatasets import CreateDatasets
from split_data import split_data
import os
from torch.utils.data.dataloader import DataLoader
import torch
import torch.optim as optim
import torch.nn as nn
from utils import train_one_epoch, valdef train(opt):batch = opt.batchdata_path = opt.dataPathprint_every = opt.everydevice = 'cuda' if torch.cuda.is_available() else 'cpu'epochs = opt.epochimg_size = opt.imgsizeif not os.path.exists(opt.savePath):os.mkdir(opt.savePath)# 加载数据集train_imglist, val_imglist = split_data(data_path)train_datasets = CreateDatasets(train_imglist, img_size)val_datasets = CreateDatasets(val_imglist, img_size)train_loader = DataLoader(dataset=train_datasets, batch_size=batch, shuffle=True, num_workers=opt.numworker,drop_last=True)val_loader = DataLoader(dataset=val_datasets, batch_size=batch, shuffle=True, num_workers=opt.numworker,drop_last=True)# 实例化网络pix_G = pix2pixG_256().to(device)pix_D = pix2pixD_256().to(device)# 定义优化器和损失函数optim_G = optim.Adam(pix_G.parameters(), lr=0.0002, betas=(0.5, 0.999))optim_D = optim.Adam(pix_D.parameters(), lr=0.0002, betas=(0.5, 0.999))loss = nn.MSELoss()l1_loss = nn.L1Loss()start_epoch = 0# 加载预训练权重if opt.weight != '':ckpt = torch.load(opt.weight)pix_G.load_state_dict(ckpt['G_model'], strict=False)pix_D.load_state_dict(ckpt['D_model'], strict=False)start_epoch = ckpt['epoch'] + 1writer = SummaryWriter('train_logs')# 开始训练for epoch in range(start_epoch, epochs):loss_mG, loss_mD = train_one_epoch(G=pix_G, D=pix_D, train_loader=train_loader,optim_G=optim_G, optim_D=optim_D, writer=writer, loss=loss, device=device,plot_every=print_every, epoch=epoch, l1_loss=l1_loss)writer.add_scalars(main_tag='train_loss', tag_scalar_dict={'loss_G': loss_mG,'loss_D': loss_mD}, global_step=epoch)# 验证集val(G=pix_G, D=pix_D, val_loader=val_loader, loss=loss, l1_loss=l1_loss, device=device, epoch=epoch)# 保存模型torch.save({'G_model': pix_G.state_dict(),'D_model': pix_D.state_dict(),'epoch': epoch}, './weights/pix2pix_256.pth')def cfg():parse = argparse.ArgumentParser()parse.add_argument('--batch', type=int, default=16)parse.add_argument('--epoch', type=int, default=200)parse.add_argument('--imgsize', type=int, default=256)parse.add_argument('--dataPath', type=str, default='../base', help='data root path')parse.add_argument('--weight', type=str, default='', help='load pre train weight')parse.add_argument('--savePath', type=str, default='./weights', help='weight save path')parse.add_argument('--numworker', type=int, default=4)parse.add_argument('--every', type=int, default=2, help='plot train result every * iters')opt = parse.parse_args()return optif __name__ == '__main__':opt = cfg()print(opt)train(opt)

       utils.py 

import torchvision
from tqdm import tqdm
import torch
import osdef train_one_epoch(G, D, train_loader, optim_G, optim_D, writer, loss, device, plot_every, epoch, l1_loss):pd = tqdm(train_loader)loss_D, loss_G = 0, 0step = 0G.train()D.train()for idx, data in enumerate(pd):in_img = data[0].to(device)real_img = data[1].to(device)# 先训练Dfake_img = G(in_img)D_fake_out = D(fake_img.detach(), in_img).squeeze()D_real_out = D(real_img, in_img).squeeze()ls_D1 = loss(D_fake_out, torch.zeros(D_fake_out.size()).cuda())ls_D2 = loss(D_real_out, torch.ones(D_real_out.size()).cuda())ls_D = (ls_D1 + ls_D2) * 0.5optim_D.zero_grad()ls_D.backward()optim_D.step()# 再训练Gfake_img = G(in_img)D_fake_out = D(fake_img, in_img).squeeze()ls_G1 = loss(D_fake_out, torch.ones(D_fake_out.size()).cuda())ls_G2 = l1_loss(fake_img, real_img)ls_G = ls_G1 + ls_G2 * 100optim_G.zero_grad()ls_G.backward()optim_G.step()loss_D += ls_Dloss_G += ls_Gpd.desc = 'train_{} G_loss: {} D_loss: {}'.format(epoch, ls_G.item(), ls_D.item())# 绘制训练结果if idx % plot_every == 0:writer.add_images(tag='train_epoch_{}'.format(epoch), img_tensor=0.5 * (fake_img + 1), global_step=step)step += 1mean_lsG = loss_G / len(train_loader)mean_lsD = loss_D / len(train_loader)return mean_lsG, mean_lsD@torch.no_grad()
def val(G, D, val_loader, loss, device, l1_loss, epoch):pd = tqdm(val_loader)loss_D, loss_G = 0, 0G.eval()D.eval()all_loss = 10000for idx, item in enumerate(pd):in_img = item[0].to(device)real_img = item[1].to(device)fake_img = G(in_img)D_fake_out = D(fake_img, in_img).squeeze()ls_D1 = loss(D_fake_out, torch.zeros(D_fake_out.size()).cuda())ls_D = ls_D1 * 0.5ls_G1 = loss(D_fake_out, torch.ones(D_fake_out.size()).cuda())ls_G2 = l1_loss(fake_img, real_img)ls_G = ls_G1 + ls_G2 * 100loss_G += ls_Gloss_D += ls_Dpd.desc = 'val_{}: G_loss:{} D_Loss:{}'.format(epoch, ls_G.item(), ls_D.item())# 保存最好的结果all_ls = ls_G + ls_Dif all_ls < all_loss:all_loss = all_lsbest_image = fake_imgresult_img = (best_image + 1) * 0.5if not os.path.exists('./results'):os.mkdir('./results')torchvision.utils.save_image(result_img, './results/val_epoch{}.jpg'.format(epoch))

     (四)test

from pix2Topix import pix2pixG_256
import torch
import torchvision.transforms as transform
import matplotlib.pyplot as plt
import cv2
from PIL import Imagedef test(img_path):if img_path.endswith('.png'):img = cv2.imread(img_path)img = img[:, :, ::-1]else:img = Image.open(img_path)transforms = transform.Compose([transform.ToTensor(),transform.Resize((256, 256)),transform.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])img = transforms(img.copy())img = img[None].to('cuda')  # [1,3,128,128]# 实例化网络G = pix2pixG_256().to('cuda')# 加载预训练权重ckpt = torch.load('weights/pix2pix_256.pth')G.load_state_dict(ckpt['G_model'], strict=False)G.eval()out = G(img)[0]out = out.permute(1,2,0)out = (0.5 * (out + 1)).cpu().detach().numpy()plt.figure()plt.imshow(out)plt.show()if __name__ == '__main__':test('../base/cmp_b0141.png')

五、结果

    (一)128*128

        利用128*128的net迭代了200个epoch,训练损失如下图所示。

        下图为200个epoch后G生成的图片(验证集上) 

    (二)256*256       

        利用256*256的net迭代了170个epoch,训练损失如下图所示。 

         下图为训练集上G生成的部分图片(训练集上生成效果还是很不错的)。

        下图为验证集上G生成的部分图片(验证集上效果相对较差一些)。

六、完整代码

        代码:代码       提取码:1uee

        权重:weights  提取码:zmdo

        数据集:data    提取码:yydk   


http://chatgpt.dhexx.cn/article/u27gDNMo.shtml

相关文章

pix2pix、pix2pixHD 通过损失日志进行训练可视化

目录 背景 代码 结果 总结 背景 pix2pix(HD)代码在训练时会自动保存一个损失变化的txt文件&#xff0c;通过该文件能够对训练过程进行一个简单的可视化&#xff0c;代码如下。 训练的损失文件如图&#xff0c;对其进行可视化。 代码 #coding:utf-8 ## #author: QQ&#x…

Pix2Pix代码解析

参考链接&#xff1a;https://github.com/yenchenlin/pix2pix-tensorflow https://blog.csdn.net/stdcoutzyx/article/details/78820728 utils.py from __future__ import division import math import json import random import pprint import scipy.misc import numpy as…

pix2pix 与 pix2pixHD的大致分析

目录 pix2pix与pix2pixHD的生成器 判别器 PatchGAN&#xff08;马尔科夫判别器&#xff09; 1、pix2pix 简单粗暴的办法 如何解决模糊呢&#xff1f; 其他tricks 2、pix2pixHD 高分辨率图像生成 模型结构 Loss设计 使用Instance-map的图像进行训练 语义编辑 总结 …

Tensorflow2.0之Pix2pix

文章目录 Pix2pix介绍Pix2pix应用Pix2pix生成器及判别器网络结构代码实现1、导入需要的库2、下载数据包3、加载并展示数据包中的图片4、处理图片4.1 将图像调整为更大的高度和宽度4.2 随机裁剪到目标尺寸4.3 随机将图像做水平镜像处理4.4 图像归一化4.5 处理训练集图片4.6 处理…

pix2pix算法笔记

论文:Image-to-Image Translation with Conditional Adversarial Networks 论文链接:https://arxiv.org/abs/1611.07004 代码链接:https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix 这篇论文发表在CVPR2017,简称pix2pix,是将GAN应用于有监督的图像到图像翻译的经…

Pix2Pix原理解析以及代码流程

文章目录 1、网络搭建2、反向传播过程3、PatchGAN4.与CGAN的不同之处 1、网络搭建 class UnetGenerator(nn.Module):"""Create a Unet-based generator"""def __init__(self, input_nc, output_nc, num_downs, ngf64, norm_layernn.BatchNorm2d…

图像翻译网络模型Pix2Pix

Pix2pix算法(Image-to-Image Translation,图像翻译)&#xff0c;它的核心技术有三点&#xff1a;基于条件GAN的损失函数&#xff0c;基于U-Net的生成器和基于PatchGAN的判别器。Pix2Pix能够在诸多图像翻译任务上取得令人惊艳的效果&#xff0c;但因为它的输入是图像对&#xff…

GAN系列之pix2pix、pix2pixHD

1. 摘要 图像处理的很多问题都是将一张输入的图片转变为一张对应的输出图片&#xff0c;比如灰度图、梯度图、彩色图之间的转换等。通常每一种问题都使用特定的算法&#xff08;如&#xff1a;使用CNN来解决图像转换问题时&#xff0c;要根据每个问题设定一个特定的loss funct…

Pix2Pix原理解析

1.网络搭建 class UnetGenerator(nn.Module):"""Create a Unet-based generator"""def __init__(self, input_nc, output_nc, num_downs, ngf64, norm_layernn.BatchNorm2d, use_dropoutFalse):"""Construct a Unet generatorPa…

如何利用Pix2Pix将黑白图片自动变成彩色图片

实现黑白图片自动变成彩色图片 如果你有一幅黑白图片,你该如何上色让他变成彩色的呢?通常做法可能是使用PS工具来进行上色。那么,有没有什么办法进行自动上色呢?自动将黑白图片变成彩色图片?答案是有的,使用深度学习中的Pix2Pix网络就可以实现这一功能。 如图所示,我们…

Pix2Pix进一步了解

参考&#xff1a;Pix2Pix视频解读 一、Pix2Pix是输入图片矩阵而不是标签向量 1、生成器方面 Pix2Pix与CGAN之间的联系&#xff1a;CGAN生成器输入的是一个label&#xff0c;而我们现在要做的是把这个lable换成一个图片&#xff0c;如下所示。这个图片是一个建筑物的模…

CycleGAN与pix2pix训练自己的数据集-Pytorch

github&#xff1a;https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix 参考&#xff1a;https://blog.csdn.net/Gavinmiaoc/article/details/80585531 文章目录 CycleganDownload&Prerequisitesbefore your work数据集训练测试 pix2pix数据集训练测试 Cyclegan Do…

pix2pix学习系列(1):预训练模型测试pix2pix

pix2pix学习系列&#xff08;1&#xff09;&#xff1a;预训练模型测试pix2pix 参考文献&#xff1a; [Pytorch系列-66]&#xff1a;生成对抗网络GAN - 图像生成开源项目pytorch-CycleGAN-and-pix2pix - 使用预训练模型测试pix2pix模型 运行环境 win 10 1、代码下载 Gith…

pix2pix简要笔记

参考(40条消息) 全文翻译&杂记《Image-to-Image Translation with Conditional Adversarial NetWorks》_Maples丶丶的博客-CSDN博客_image-to-image translation 图像到图像通常有特定方法&#xff08;没有通用&#xff09;&#xff0c;但本质是像素到像素的映射问题。本文…

简单理解Pix2Pix

论文名&#xff1a;Image-to-Image Translation with Conditional Adversarial Networks 论文地址&#xff1a;https://arxiv.org/abs/1611.07004 代码链接&#xff1a;https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix Pix2Pix是做什么的 图像风格迁移&#xff0c;一…

Pix2pix网络的基本实现

Pix2pix Gan 主要用于图像之间的转换&#xff0c;又称图像翻译《Image-to-Image Translation with Conditional Adversarial Networks》 普通的GAN接受的G部分的输入是随机向量&#xff0c;输出的是图像。D部分接受的输入是图像&#xff08;生成的或是真实的&#xff09;&…

Pix2Pix(2017)+CycleGAN+Pix2PixHD

GAN 常规的深度学习任务如图像分类、目标检测以及语义分割或者实例分割&#xff0c;这些任务的结果都可以归结为预测。图像分类是预测单一的类别&#xff0c;目标检测是预测Bbox和类别&#xff0c;语义分割或者实例分割是预测每个像素的类别。而GAN是生成一个新的东西如一张图…

经典论文pix2pix详解

Image-to-Image Translation with Conditional Adversarial Networks https://phillipi.github.io/pix2pix/ https://arxiv.org/pdf/1611.07004.pdf https://github.com/phillipi/pix2pix https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix 摘要&#xff1a;我们研…

pix2pix 学习笔记

论文&#xff1a; Image-to-Image Translation with Conditional Adversarial Networks https://arxiv.org/pdf/1611.07004v1.pdf 代码&#xff1a; 官方project&#xff1a;https://phillipi.github.io/pix2pix/ 官方torch代码&#xff1a;https://github.com/phillipi/pi…

生成对抗:Pix2Pix

cGAN : Pix2Pix 生成对抗网络还有一个有趣的应用就是&#xff0c;图像到图像的翻译。例如:草图到照片&#xff0c;黑白图像到RGB&#xff0c;谷歌地图到卫星视图&#xff0c;等等。Pix2Pix就是实现图像转换的生成对抗模型&#xff0c;但是Pix2Pix中的对抗网络又不同于普通的GAN…