pix2pix、pix2pixHD 通过损失日志进行训练可视化

article/2025/8/26 22:23:58

目录

背景

代码

结果

总结


背景

pix2pix(HD)代码在训练时会自动保存一个损失变化的txt文件,通过该文件能够对训练过程进行一个简单的可视化,代码如下。

训练的损失文件如图,对其进行可视化。

代码

#coding:utf-8
##
#author: QQ:1913434222 WeChat:Alocus
##
import matplotlib.pyplot as plt
import re
import numpy as np
import os,sysfile = "loss_logA - 副本.txt"
savepath = r"J:\混合样本去雾\调试代码&脚本&可视化\visualiz\\"
#dirs = os.listdir( filepath )
#for file in dirs:
#    if file.endswith('txt'):
#        f  = open(filepath+file,'r')
f  = open(file,'r')
lines = f.readlines()
G_GAN = []
G_GAN_Feat = []
G_VGG = []
G_KL= []
D_real = []
D_fake = []
G_featD = []
featD_real = []
featD_fake = []
total_data =[]for line in lines:if "(epoch" in line:if "G_GAN" in line :G_GAN_list = line.split()G_GAN.append(float(G_GAN_list[9]))if "G_GAN_Feat" in line :G_GAN_Feat_list = line.split()G_GAN_Feat.append(float(G_GAN_Feat_list[11]))if "G_VGG" in line :G_VGG_list = line.split()G_VGG.append(float(G_VGG_list[13]))if "G_KL" in line :G_KL_list = line.split()G_KL.append(float(G_KL_list[15]))if "D_real" in line:D_real_list = line.split()D_real.append(float(D_real_list[17]))if "D_fake" in line:D_fake_list = line.split()D_fake.append(float(D_fake_list[19]))if "G_featD" in line:G_featD_list = line.split()G_featD.append(float(G_featD_list[21]))if "featD_real" in line:featD_real_list = line.split()featD_real.append(float(featD_real_list[23]))if "featD_fake" in line:featD_fake_list = line.split()featD_fake.append(float(featD_fake_list[25]))total_data = [(G_GAN [i] + G_GAN_Feat[i]+G_VGG[i]+G_KL[i]+D_real[i]+D_fake[i]+G_featD[i]+featD_real[i]+featD_fake[i])  for i in range(0, len(featD_fake))]fig = plt.figure()#(figsize=(50,6))ax = np.linspace(0,len(featD_fake),len(featD_fake))plt.plot(ax, total_data, label="total")plt.plot(ax,G_GAN,label="G_GAN")plt.plot(ax,G_GAN_Feat,label="G_GAN_Feat")plt.plot(ax,G_VGG,label="G_VGG")plt.plot(ax,D_real,label="D_real")plt.plot(ax,D_real,label="D_fake")plt.plot(ax,G_KL,label="G_KL")plt.plot(ax,G_featD,label="G_featD")plt.plot(ax,featD_real,label="featD_real")plt.plot(ax,featD_fake,label="featD_fake")plt.grid(color='gray', linestyle='--', linewidth=1, alpha=0.3)
plt.legend()
plt.title('VAE$_1$')
plt.xlabel('epoch')
plt.ylabel('loss')
plt.savefig(savepath+file.split('.txt')[0]+'.png')#G_GAN: 0.973 G_GAN_Feat: 7.709 G_VGG: 8.092 G_KL: 1.172 D_real: 0.908 D_fake: 0.870
# G_Feat_L2: 46.512 G_GAN: 3.917 G_GAN_Feat: 14.005 G_VGG: 8.741 D_real: 3.828 D_fake: 3.098

结果

总结

如果代码的损失函数等进行了修改,或者损失函数有变化,则需要对代码进行对应的修改,修改很简单,看下前面如何写的,照着改就ok啦!

有一些细节,如他们代码保存损失时不是每个epoch都一直保存的,有的epoch不同iter会保存两次所以会有些小问题,不过还好,问题不大。

祝好!


http://chatgpt.dhexx.cn/article/5N0NwUkr.shtml

相关文章

Pix2Pix代码解析

参考链接:https://github.com/yenchenlin/pix2pix-tensorflow https://blog.csdn.net/stdcoutzyx/article/details/78820728 utils.py from __future__ import division import math import json import random import pprint import scipy.misc import numpy as…

pix2pix 与 pix2pixHD的大致分析

目录 pix2pix与pix2pixHD的生成器 判别器 PatchGAN(马尔科夫判别器) 1、pix2pix 简单粗暴的办法 如何解决模糊呢? 其他tricks 2、pix2pixHD 高分辨率图像生成 模型结构 Loss设计 使用Instance-map的图像进行训练 语义编辑 总结 …

Tensorflow2.0之Pix2pix

文章目录 Pix2pix介绍Pix2pix应用Pix2pix生成器及判别器网络结构代码实现1、导入需要的库2、下载数据包3、加载并展示数据包中的图片4、处理图片4.1 将图像调整为更大的高度和宽度4.2 随机裁剪到目标尺寸4.3 随机将图像做水平镜像处理4.4 图像归一化4.5 处理训练集图片4.6 处理…

pix2pix算法笔记

论文:Image-to-Image Translation with Conditional Adversarial Networks 论文链接:https://arxiv.org/abs/1611.07004 代码链接:https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix 这篇论文发表在CVPR2017,简称pix2pix,是将GAN应用于有监督的图像到图像翻译的经…

Pix2Pix原理解析以及代码流程

文章目录 1、网络搭建2、反向传播过程3、PatchGAN4.与CGAN的不同之处 1、网络搭建 class UnetGenerator(nn.Module):"""Create a Unet-based generator"""def __init__(self, input_nc, output_nc, num_downs, ngf64, norm_layernn.BatchNorm2d…

图像翻译网络模型Pix2Pix

Pix2pix算法(Image-to-Image Translation,图像翻译),它的核心技术有三点:基于条件GAN的损失函数,基于U-Net的生成器和基于PatchGAN的判别器。Pix2Pix能够在诸多图像翻译任务上取得令人惊艳的效果,但因为它的输入是图像对&#xff…

GAN系列之pix2pix、pix2pixHD

1. 摘要 图像处理的很多问题都是将一张输入的图片转变为一张对应的输出图片,比如灰度图、梯度图、彩色图之间的转换等。通常每一种问题都使用特定的算法(如:使用CNN来解决图像转换问题时,要根据每个问题设定一个特定的loss funct…

Pix2Pix原理解析

1.网络搭建 class UnetGenerator(nn.Module):"""Create a Unet-based generator"""def __init__(self, input_nc, output_nc, num_downs, ngf64, norm_layernn.BatchNorm2d, use_dropoutFalse):"""Construct a Unet generatorPa…

如何利用Pix2Pix将黑白图片自动变成彩色图片

实现黑白图片自动变成彩色图片 如果你有一幅黑白图片,你该如何上色让他变成彩色的呢?通常做法可能是使用PS工具来进行上色。那么,有没有什么办法进行自动上色呢?自动将黑白图片变成彩色图片?答案是有的,使用深度学习中的Pix2Pix网络就可以实现这一功能。 如图所示,我们…

Pix2Pix进一步了解

参考:Pix2Pix视频解读 一、Pix2Pix是输入图片矩阵而不是标签向量 1、生成器方面 Pix2Pix与CGAN之间的联系:CGAN生成器输入的是一个label,而我们现在要做的是把这个lable换成一个图片,如下所示。这个图片是一个建筑物的模…

CycleGAN与pix2pix训练自己的数据集-Pytorch

github:https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix 参考:https://blog.csdn.net/Gavinmiaoc/article/details/80585531 文章目录 CycleganDownload&Prerequisitesbefore your work数据集训练测试 pix2pix数据集训练测试 Cyclegan Do…

pix2pix学习系列(1):预训练模型测试pix2pix

pix2pix学习系列(1):预训练模型测试pix2pix 参考文献: [Pytorch系列-66]:生成对抗网络GAN - 图像生成开源项目pytorch-CycleGAN-and-pix2pix - 使用预训练模型测试pix2pix模型 运行环境 win 10 1、代码下载 Gith…

pix2pix简要笔记

参考(40条消息) 全文翻译&杂记《Image-to-Image Translation with Conditional Adversarial NetWorks》_Maples丶丶的博客-CSDN博客_image-to-image translation 图像到图像通常有特定方法(没有通用),但本质是像素到像素的映射问题。本文…

简单理解Pix2Pix

论文名:Image-to-Image Translation with Conditional Adversarial Networks 论文地址:https://arxiv.org/abs/1611.07004 代码链接:https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix Pix2Pix是做什么的 图像风格迁移,一…

Pix2pix网络的基本实现

Pix2pix Gan 主要用于图像之间的转换,又称图像翻译《Image-to-Image Translation with Conditional Adversarial Networks》 普通的GAN接受的G部分的输入是随机向量,输出的是图像。D部分接受的输入是图像(生成的或是真实的)&…

Pix2Pix(2017)+CycleGAN+Pix2PixHD

GAN 常规的深度学习任务如图像分类、目标检测以及语义分割或者实例分割,这些任务的结果都可以归结为预测。图像分类是预测单一的类别,目标检测是预测Bbox和类别,语义分割或者实例分割是预测每个像素的类别。而GAN是生成一个新的东西如一张图…

经典论文pix2pix详解

Image-to-Image Translation with Conditional Adversarial Networks https://phillipi.github.io/pix2pix/ https://arxiv.org/pdf/1611.07004.pdf https://github.com/phillipi/pix2pix https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix 摘要:我们研…

pix2pix 学习笔记

论文: Image-to-Image Translation with Conditional Adversarial Networks https://arxiv.org/pdf/1611.07004v1.pdf 代码: 官方project:https://phillipi.github.io/pix2pix/ 官方torch代码:https://github.com/phillipi/pi…

生成对抗:Pix2Pix

cGAN : Pix2Pix 生成对抗网络还有一个有趣的应用就是,图像到图像的翻译。例如:草图到照片,黑白图像到RGB,谷歌地图到卫星视图,等等。Pix2Pix就是实现图像转换的生成对抗模型,但是Pix2Pix中的对抗网络又不同于普通的GAN…

Pix2Pix

1. 概述 很多的图像处理问题可以转换成图像到图像(Image-to-Image)的转换,即将一个输入图像翻译成另外一个对应的图像。通常直接学习这种转换,需要事先定义好损失函数,然而对于不同的转换任务,需要设计的损…