pix2pix学习系列(1):预训练模型测试pix2pix

article/2025/8/27 1:31:12

pix2pix学习系列(1):预训练模型测试pix2pix

参考文献:

[Pytorch系列-66]:生成对抗网络GAN - 图像生成开源项目pytorch-CycleGAN-and-pix2pix - 使用预训练模型测试pix2pix模型

运行环境

win 10

1、代码下载

Github

2、下载pix2pix数据集

  • 通过URL手工下载:地址

房屋外观转换成房子实体

  • 存放路径:pytorch-CycleGAN-and-pix2pix\datasets
  • 存放路径

3、下载预训练模型

  • 下载链接
    下载预训练模型
  • 存放路径
    需要把模型的名称改为latest_net_G.pth,并存放在./checkpoints/facades_label2photo_pretrained目录中。
    存放路径

4. 使用Anaconda进行调试

  • 打开Anaconda Prompt (Anaconda3)
    在这里插入图片描述

  • 激活环境
    activate yolov5_tpz

  • 切换到d盘
    输入: d:
    在这里插入图片描述

  • 切换到 D:\tpz\the-third-paper\pytorch-CycleGAN-and-pix2pix-master
    输入: cd D:\tpz\the-third-paper\pytorch-CycleGAN-and-pix2pix-master
    在这里插入图片描述

  • 运行命令
    输入:
    python test.py --dataroot ./datasets/facades --direction BtoA --model pix2pix --name facades_label2photo_pretrained

  • 运行效果

----------------- Options ---------------aspect_ratio: 1.0batch_size: 1checkpoints_dir: ./checkpointscrop_size: 256dataroot: ./datasets/facades                   [default: None]dataset_mode: aligneddirection: BtoA                                 [default: AtoB]display_winsize: 256epoch: latesteval: Falsegpu_ids: 0init_gain: 0.02init_type: normalinput_nc: 3isTrain: False                                [default: None]load_iter: 0                                    [default: 0]load_size: 256max_dataset_size: infmodel: pix2pix                              [default: test]n_layers_D: 3name: facades_label2photo_pretrained       [default: experiment_name]ndf: 64netD: basicnetG: unet_256ngf: 64no_dropout: Falseno_flip: Falsenorm: batchnum_test: 50num_threads: 4output_nc: 3phase: testpreprocess: resize_and_cropresults_dir: ./results/serial_batches: Falsesuffix:use_wandb: Falseverbose: False
----------------- End -------------------
dataset [AlignedDataset] was created
initialize network with normal
model [Pix2PixModel] was created
loading the model from ./checkpoints\facades_label2photo_pretrained\latest_net_G.pth
---------- Networks initialized -------------
[Network G] Total number of parameters : 54.414 M
-----------------------------------------------
creating web directory ./results/facades_label2photo_pretrained\test_latest
D:\Anaconda3\envs\yolov5_tpz\lib\site-packages\torchvision\transforms\transforms.py:280: UserWarning: Argument interpolation should be of type InterpolationMode instead of int. Please, use InterpolationMode enum.warnings.warn(
processing (0000)-th image... ['./datasets/facades\\test\\1.jpg']
processing (0005)-th image... ['./datasets/facades\\test\\103.jpg']
processing (0010)-th image... ['./datasets/facades\\test\\12.jpg']
processing (0015)-th image... ['./datasets/facades\\test\\17.jpg']
processing (0020)-th image... ['./datasets/facades\\test\\21.jpg']
processing (0025)-th image... ['./datasets/facades\\test\\26.jpg']
processing (0030)-th image... ['./datasets/facades\\test\\30.jpg']
processing (0035)-th image... ['./datasets/facades\\test\\35.jpg']
processing (0040)-th image... ['./datasets/facades\\test\\4.jpg']
processing (0045)-th image... ['./datasets/facades\\test\\44.jpg']
  • 查看结果
    图片位置: \results\facades_label2photo_pretrained\test_latest\images
    在这里插入图片描述
    在这里插入图片描述

5. 也可以使用pycharm进行调试

  • 设置 options/base_options.py
parser.add_argument('--dataroot', default='datasets/facades', help='path to images (should have subfolders trainA, trainB, valA, valB, etc)')
parser.add_argument('--name', type=str, default='facades_label2photo_pretrained', help='name of the experiment. It decides where to store samples and models')
parser.add_argument('--model', type=str, default='pix2pix', help='chooses which model to use. [cycle_gan | pix2pix | test | colorization]')
parser.add_argument('--direction', type=str, default='BtoA', help='AtoB or BtoA')
  • 设置 options/test_options.py
parser.set_defaults(model='pix2pix')

注意:
如果不将 parser.set_defaults(model='test ') 更改为 parser.set_defaults(model=‘pix2pix’),将会出现以下错误:
AttributeError: ‘Sequential’ object has no attribute ‘model’
在这里插入图片描述
解决方案参考

  • 运行 test.py

http://chatgpt.dhexx.cn/article/1WbnhmDe.shtml

相关文章

pix2pix简要笔记

参考(40条消息) 全文翻译&杂记《Image-to-Image Translation with Conditional Adversarial NetWorks》_Maples丶丶的博客-CSDN博客_image-to-image translation 图像到图像通常有特定方法(没有通用),但本质是像素到像素的映射问题。本文…

简单理解Pix2Pix

论文名:Image-to-Image Translation with Conditional Adversarial Networks 论文地址:https://arxiv.org/abs/1611.07004 代码链接:https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix Pix2Pix是做什么的 图像风格迁移,一…

Pix2pix网络的基本实现

Pix2pix Gan 主要用于图像之间的转换,又称图像翻译《Image-to-Image Translation with Conditional Adversarial Networks》 普通的GAN接受的G部分的输入是随机向量,输出的是图像。D部分接受的输入是图像(生成的或是真实的)&…

Pix2Pix(2017)+CycleGAN+Pix2PixHD

GAN 常规的深度学习任务如图像分类、目标检测以及语义分割或者实例分割,这些任务的结果都可以归结为预测。图像分类是预测单一的类别,目标检测是预测Bbox和类别,语义分割或者实例分割是预测每个像素的类别。而GAN是生成一个新的东西如一张图…

经典论文pix2pix详解

Image-to-Image Translation with Conditional Adversarial Networks https://phillipi.github.io/pix2pix/ https://arxiv.org/pdf/1611.07004.pdf https://github.com/phillipi/pix2pix https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix 摘要:我们研…

pix2pix 学习笔记

论文: Image-to-Image Translation with Conditional Adversarial Networks https://arxiv.org/pdf/1611.07004v1.pdf 代码: 官方project:https://phillipi.github.io/pix2pix/ 官方torch代码:https://github.com/phillipi/pi…

生成对抗:Pix2Pix

cGAN : Pix2Pix 生成对抗网络还有一个有趣的应用就是,图像到图像的翻译。例如:草图到照片,黑白图像到RGB,谷歌地图到卫星视图,等等。Pix2Pix就是实现图像转换的生成对抗模型,但是Pix2Pix中的对抗网络又不同于普通的GAN…

Pix2Pix

1. 概述 很多的图像处理问题可以转换成图像到图像(Image-to-Image)的转换,即将一个输入图像翻译成另外一个对应的图像。通常直接学习这种转换,需要事先定义好损失函数,然而对于不同的转换任务,需要设计的损…

pix2pix的简介

概念: 给定一个输入数据和噪声数据生成目标图像,在pix2pix中判别器的输入是生成图像和源图像,而生成器的输入是源图像和随机噪声(使生成模型具有一定的随机性),pix2pix是通过在生成器的模型层加入Dropout来…

AI修图!pix2pix网络介绍

语言翻译是大家都知道的应用。但图像作为一种交流媒介,也有很多种表达方式,比如灰度图、彩色图、梯度图甚至人的各种标记等。在这些图像之间的转换称之为图像翻译,是一个图像生成任务。 多年来,这些任务都需要用不同的模型去生成…

pix2pix论文详解

pix2pix论文详解 – 潘登同学的对抗神经网络笔记 文章目录 pix2pix论文详解 -- 潘登同学的对抗神经网络笔记 pix2pix简介模型输入与GAN的区别Loss函数的选取conditional GAN的loss 生成器网络结构判别器网络结构训练过程生成器G的训练技巧将dropout用在预测 评估指标 艺术欣赏 …

对于pix2pix的介绍以及实现

最近读了pix2pix的相关文章,也是关于对抗生成的。它与之前接触的GAN有挺大的不同。比如从训练集来说,它是进行成对的训练(接下来会介绍),损失函数的不同比如加入了L1损失,以及生成器的输入,以及…

GAN系列之 pix2pixGAN 网络原理介绍以及论文解读

一、什么是pix2pix GAN 论文:《Image-to-Image Translation with Conditional Adversarial Networks》 pix2pix GAN主要用于图像之间的转换,又称图像翻译。图像处理的很多问题都是将一张输入的图片转变为一张对应的输出图片,端到端的训练。 …

pix2pix算法原理与实现

一、算法名称 Pix2pix算法(Image-to-Image Translation,图像翻译) 来源于论文:Image-to-Image Translation with Conditional Adversarial Networks 二、算法简要介绍、研究背景与意义 2.1介绍 图像处理、图形学和视觉中的许多问题都涉及到将输入图像转换为相应…

Java字符串按照字节数进行截取

本文为joshua317原创文章,转载请注明:转载自joshua317博客 Java字符串按照字节数进行截取 - joshua317的博客 一、问题 编写一个截取字符串的函数,输入为一个字符串和字节数,输出为按字节截取的字符串。但是要保证汉字不被截半个&#xff0…

JAVA中截取字符串中指定字符串

JAVA中截取指定字符串 举个例子,需要截取“abcdef”中的“cde”。 场景1:获取该字符串的下标。输出“cde”。 public static void main(String[] args) {// TODO Auto-generated method stubString data "abcdef";String out data.substri…

Java字符串截取 方法

在 String 中提供了两个截取字符串的方法,一个是从指定位置截取到字符串结尾,另一个是截取指定范围的内容。 方法的重载: public String substring(int beginIndex) {}public String substring(int beginIndex, int endIndex) {}例子演示&am…

java截取某个字符之前的字符串

1.截取"-"之前字符串 代码如下(示例): //java截取某个字符之前的字符串 public static void substringTest01(){String str "1627579713907351556-202302200018";//截取-之前字符串String str1 str.substring(0, str.…

java中字符串截取,调用substring()方法

substring() 方法返回字符串的子字符串。在java中 substring()方法有两种用法, 第一种 public String substring(int beginIndex) 第二种 public String substring(int beginIndex, int endIndex) 参数的意思 beginIndex -- 起始索引(包括&#xff09…

java截取指定字符串中的某段字符

利用字符串的substring函数来进行截取。 其中,substring函数有两个参数: 1、第一个参数是开始截取的字符位置。(从0开始) 2、第二个参数是结束字符的位置1。(从0开始) indexof函数的作用是查找该字符串中…