VaR - 风险价值 - 蒙特卡罗法 - Python

article/2025/8/29 11:51:59

风险价值(VaR):即在市场正常波动的条件下,在一定概率水平P%下,某一金融资产或金融资产组合的VaR是在未来特定一段时间Δt内最大可能损失。 现在我们使用蒙特卡罗模拟法进行风险价值的估算。简单来说,蒙特卡罗模拟法即运用历史数据对未来进行多次模拟,以求得未来股价结果的概率分布。蒙特卡罗模拟法的公式如下, 其中S为股票的价格,\Delta S为股价变动大小(有正负),μ为期望收益率(平均),Δt为时间间隔,σ为股票风险,ε为随机变量。将S移项可得:

\frac{\Delta S}{S} = \upsilon \Delta t + \sigma \varepsilon \sqrt{\Delta t }          

将S移项可得: 

\Delta S = S(\upsilon \Delta t + \sigma \varepsilon \sqrt{\Delta t })

表示股价的波动大小是由前一天的波动期望和一个服从正态分布的随机波动影响

所以下一个\Delta t的股价可以表示为

S_{t} = S + \Delta S =S + S(\upsilon \Delta t + \sigma \varepsilon \sqrt{\Delta t })

 

以美的股价为例,先贴上程序代码如下,回头有空再详细解析:

#环境&数据准备
import sys as sy
import numpy as np
import pandas as pd
import tushare as ts
import pyecharts as pye
from sklearn import datasets as ds
import matplotlib as mpl
from matplotlib import pyplot as plt
import seaborn as sns
import pyecharts as pyedef stock_monte_carlo(start_price,days,mu,sigma):''' This function takes in starting stock price, days of simulation,mu,sigma, and returns simulated price array'''# Define a price arrayprice = np.zeros(days)price[0] = start_price# Schok and Driftshock = np.zeros(days)drift = np.zeros(days)# Run price array for number of daysfor x in range(1,days):# 假设股票的价格波动可以分为两部分,第一部分为drift,即股票会根据收益率波动,第二部分为shock,即随机波动shock[x] = np.random.normal(loc=mu * dt, scale=sigma * np.sqrt(dt))# Calculate Driftdrift[x] = mu * dt# 当天价格 = 前一天价格 + 价格波动#其中价格波动 = 前一天价格×(drift + shock)price[x] = price[x-1] + (price[x-1] * (drift[x] + shock[x]))return price#读入美的“000333”2017-01-01 到 2018-11-08复权后数据
df = ts.get_h_data('000333', start='2017-01-01', end='2018-11-8') 
#计算日均收益率
df1 = df['close'].sort_index(ascending=True)
df1 = pd.DataFrame(df1)
df1['date'] = df1.index
df1['date'] = df1[['date']].astype(str)
df1["rev"]= df1.close.diff(1)
df1["last_close"]= df1.close.shift(1)
df1["rev_rate"]= df1["rev"]/df1["last_close"]
df1 = df1.dropna()
print(df1.head(10))# 设定365天
days = 365
# Now our delta
dt = 1/days
# Now let's grab our mu (drift) from the expected return data we got for AAPL
mu = df1["rev_rate"].mean()
# Now let's grab the volatility of the stock from the std() of the average return
sigma = df1["rev_rate"].std()# Get start price 
start_price = 40.63
runs = 1000
simulations = np.zeros(runs)
np.set_printoptions(threshold=5)for run in range(runs):tmpAr = stock_monte_carlo(start_price,days,mu,sigma)simulations[run] = tmpAr[days-1];plt.plot(tmpAr)del tmpArplt.xlabel("Days")
plt.ylabel("Price")  
plt.title('Monte Carlo Analysis for Tesla')
plt.show()

 


http://chatgpt.dhexx.cn/article/nYllbLM2.shtml

相关文章

R语言用GARCH模型波动率建模和预测、回测风险价值 (VaR)分析股市收益率时间序列

最近我们被客户要求撰写关于GARCH的研究报告,包括一些图形和统计输出。 风险价值 (VaR) 风险价值 (VaR) 是金融风险管理中使用最广泛的市场风险度量,也被投资组合经理等从业者用来解释未来市场风险。VaR 可以定义为资产在给定时间段内以概率 θ 超过的市…

VaR风险价值-Python版本

1、VaR简介 2、VaR原理 3、不同VaR实现方法及适用场景 3.1 历史模拟法 3.1.1 使用TUSHARE读入美的复权后估计数据 隆重介绍一下TUSHARE, 非常好的财经数据库, 能获取到国内股价信息 #环境&数据准备 import sys as sy import numpy as np import…

基于蒙特卡罗模拟的股票风险价值VaR测算

基于蒙特卡罗模拟的股票风险价值VaR测算 前言:如果各位观看博客的想学的,可以通过Tushare金融数据注册链接注册账号,在获得相关数据集,这是本人的分享链接注册后,我可以获得50积分,谢谢各位支持。 摘要&…

Python蒙特卡罗(Monte Carlo)模拟计算投资组合的风险价值(VaR)

最近我们被客户要求撰写关于风险价值(VaR)的研究报告,包括一些图形和统计输出。 如何使用Python通过蒙特卡洛模拟自动计算风险值(VaR)来管理投资组合或股票的金融风险。 金融和投资组合风险管理中的VaR? …

Python风险价值计算投资组合VaR(Value at Risk )、期望损失ES(Expected Shortfall)

最近我们被客户要求撰写关于风险价值的研究报告,包括一些图形和统计输出。 Python计算获得多资产投资组合的风险度量。 视频:风险价值VaR原理与Python蒙特卡罗Monte Carlo模拟计算投资组合实例 风险价值VaR原理与Python蒙特卡罗Monte Carlo模拟计算投资…

金融数据分析 实验四 金融风险价值计算

实验原理 VaR的定义:在正常的市场条件下,给定置信水平和持有期,某种投资组合可能发生的最大损失值。 VaR模型不仅描述了损失的大小,还描述了发生损失的概率。 VaR的数学定义:给定置信水平 1 - α 和时间间隔 t ,如果一…

【视频】风险价值VaR原理与Python蒙特卡罗Monte Carlo模拟计算投资组合实例

最近我们被客户要求撰写关于风险价值VaR的研究报告,包括一些图形和统计输出。 什么是风险价值(VaR)? 风险价值 (VaR) 是一种统计数据,用于量化公司、投资组合在特定时间范围内可能发生的财务损失程度。该指标最常被投…

金融分析与风险管理——风险价值(VaR)

金融分析与风险管理——风险价值(VaR) 1. 风险价值(VaR)简述1.1 Python可视化风险价值 2. VaR值的测度方法2.1 方差-协方差法2.2 历史模拟法2.3 蒙特卡洛模拟法 3. 回溯检验4. 压力VaR 1. 风险价值(VaR)简述…

python是动态语言还是静态语言?强类型语言还是弱类型语言

首先要清楚静态类型语言和动态类型语言的判别的标准 定义:如果类型检查发生在编译阶段(compile time),那么是静态类型语言(statically typed languages)中,相反的,如果类型检查发生在运行阶段(run time),那么是动态类型…

Typescript笔记之基础知识(1):强类型语言和弱类型语言、静态语言和动态语言

foreword(前言) 这是本人关于Typescript的第一篇笔记,之所以选择将“强类型语言和弱类型语言、静态语言和动态语言”作为第一个想要去总结的主题,是因为个人觉得它很重要。 如今这个年代,可以供我们选择的编程语言非常…

编程语言的执行方式、静态语言和脚本语言

计算机执行源程序的两种方式是编译和解释 源代码:采用某种编程语言编写的计算机程序,人类可读 目标代码:计算机可以直接执行,大部分人类不可读,如:1110000111001010 编译 编译是讲源代码一次性转换为目标代…

程序的两种执行方式,静态语言和脚本语言

程序的两种执行方式,静态语言和脚本语言 文章目录 程序的两种执行方式,静态语言和脚本语言编译和解释静态语言和脚本语言 编译和解释 编译:将源代码一次性转换成目标代码的过程。(编译一次后,若需再次执行程序就可以直…

静态语言和脚本语言的区别

在计算机编程语言中,可以将编程语言分为静态语言和脚本语言两类,这两类编程语言最主要的区别是执行方式的不同。想要区分静态语言和脚本语言的区别,首先需要区分编译和解释。 编译和解释 编译是指将源代码一次性转换为目标代码的过程&#…

Java是动态语言还是静态语言,是强类型还是弱类型?

一. 前言 今天小熙突然想到一个问题,那就是Java到底是动态语言还是静态语言,是强类型还是弱类型呢?虽然知道但是还是不够深入,接下来就一起探讨下吧。 二. 图释 小熙碰巧看到一张图,完美的区分了以上的问题&#xf…

高级数据结构—斐波那契堆与二项堆详细介绍

斐波那契堆与二项堆 二项堆请点击这里👈 数据结构与堆斐波那契堆概述结构实现符号定义插入结点合并抽取最小结点分析Decrease Key第一种情况 删除最大度数的界 二项堆请点击这里👈 数据结构与堆 下图列出了小顶堆在各种数据结构(链表、二叉堆、二项堆、…

数据结构——斐波那契堆

斐波那契堆的介绍 斐波那契堆(Fibonacci heap)是一种可合并堆,可用于实现合并优先队列。它比二项堆具有更好的平摊分析性能,它的合并操作的时间复杂度是O(1)。与二项堆一样,它也是由一组堆最小有序树组成,并且是一种可合并堆。与二…

《算法导论3rd第十九章》斐波那契堆

前言 第六章堆排序使用了普通的二叉堆性质。其基本操作性能相当好,但union性能相当差。 对于一些图算法问题,EXTRACT-MIN 和DELETE操作次数远远小于DECREASE-KEY。因此有了斐波那契堆。 斐波那契堆结构 斐波那契堆是一系列具有最小堆序的有根树的集合…

斐波那契堆(Fibonacci heaps)

一:斐波那契堆 1:特性 斐波那契堆同二项堆一样,也是一种可合并堆。斐波那契堆的优势是:不涉及删除元素的操作仅需要O(1)的平摊运行时间(关于平摊分析的知识建议看《算法导论》第17章)。和二项…

3.3 斐波那契堆

结构 斐波那契堆的基础是可合并堆。 数据结构是一个森林。也就是N棵树。这点和二项堆一样。 这个结构没有二项堆那么多的要求。 Rank的概念,是子节点的数目 与二项堆不同的是,斐波那契堆的底层链表要成环,要双向链表。   而斐波那契堆的节点&#xff…

二叉堆/二项堆/斐波那契堆

二叉堆 二叉树 二叉树:是树的一种,主要的特点是二叉树的所有节点最多只有两个叶节点。除此之外没有别的要求完全二叉树:就是在二叉树当中,除了最后一层之外,所有层的节点都有满的,且最后一层的节点也是从…