Python风险价值计算投资组合VaR(Value at Risk )、期望损失ES(Expected Shortfall)

article/2025/8/29 11:47:10

最近我们被客户要求撰写关于风险价值的研究报告,包括一些图形和统计输出。

Python计算获得多资产投资组合的风险度量。

视频:风险价值VaR原理与Python蒙特卡罗Monte Carlo模拟计算投资组合实例

风险价值VaR原理与Python蒙特卡罗Monte Carlo模拟计算投资组合实例

,时长10:03

关键概念

  1. 随着价格的变动,投资经理所持有的市场价值也会发生变化。后者就是所谓的市场风险,衡量它的最流行的方法之一是定义为风险价值。风险本身被看作是实际收益和期望收益之间的差异,两者可能不同。如果它们相等,投资被认为是无风险的。同时,它不能有违约风险,也不能有再投资风险。请注意,期望收益不是投资者认为他们将获得的收益,而是反映了所有经济情况下所有可能结果的平均值。
  2. 风险价值(VaR)告诉你在一个给定的时间段内,在预先确定的置信水平下,你能损失多少钱。典型的置信度是95%和99%,意味着分析师有95%或99%的信心,损失不会超过这个数字,即5%(或1%)的VaR反映了5%(或1%)最坏情况下的未来最佳收益率。风险值是一个最先进的衡量标准,因为它可以为所有类型的资产进行计算,并考虑到多样化的因素。然而,风险值并不是一个最大的损失数字,所以分析师可能会遇到大于风险值的损失。
  3.  关于历史序列的假设
  • 过去的收益率是未来收益率的预测指标,但不能保证历史记录会显示未来最坏和最好的情况,但我们用几何平均法将价格转化为收益,所以我们对所有不同的周/月/...收益给予同等的权重,来获得T年内投资收益的复合最终价值。
  • 如果资产价格中的期望收益是合理的,那么实际收益率应该围绕这些预期呈正态分布。当收益率可以很好地接近于正态分布时,投资管理就变得更加容易操作了。

定义证明

收益的计算(PT为最终价格,P0为初始价格和股息收益率)。

将价格动态转换为收益(2),用几何时间序列(4)计算期望收益(3),而不是算术平均(收益率的波动越大,算术平均和几何平均之间的差异越大)。

 正态分布,以波动率作为风险的衡量标准,即投资的已实现收益的加权平均值的方差的平方根(σ^2),权重等于每种情况的概率ps(6)。

 最后,正如 "投资"(Bodie, Kane, Marcus)中所说,VaR是指在给定的时间范围内,收益分布的左尾概率α和右尾概率1-α累积的最小损失额。

在方差-协方差方法中,我们使用的是参数方法,假设收益是正态分布。因此,我们只需要计算两个参数,即给定收益的平均值和SD(即标准差)。

后者对Excel的计算很有用,我们用Average函数计算收益的平均值,然后STDEV将帮助我们计算标准偏差,最后得出NORMINV将达到VaR计算的目标,VaR(95)和VaR(99)的概率分别为0.05和0.01。

单资产组合VaR

 在Python中,单资产组合VaR计算没有那么复杂。

#VaR计算在Python中的应用 #准备工作(每个库都要用 "pip install *libraryname*"来预安装
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt#从雅虎财经下载谷歌数据到定义的时间段内
yf.download('GOOG', '2010-01-01', '2019-01-31')#收益率的计算 
df['return'] = Close.pct_change()#VaR计算 
VaR_90 = norm.ppf(1-0.9, mean, std_dev)print('VaR 90%置信度: ', VaR_90)

最终输出将是这样的:

雅虎是一个获得免费金融数据的好方法,另一个途径是Quandl的API库。

为了保持代码结构的连续性,我在下面介绍一个资产类别的样本,以及一个多资产的投资组合结构,其中包括VaR计算。

#准备工作 
import numpy as np
import pandas as pd
#从Quandl API导入银行数据(.4表示收盘价)。
ticker = "WIKI/BAC.4"
quandl.get(ticker, #以升序方式呈现数据
sorted( percentage["Close"])print ("99.99%的实际损失不会超过" ,percentile(order_percentage, .01) * 100)

输出以及VaR计算。

资产投资组合VaR

对于  多资产类别投资组合

#将数据集扩展到5种不同的资产,将它们组合成一个具有替代风险的投资组合。
[ "WIKI/NKE.4", "WIKI/NFLX.4", "WIKI/AMZN.4"]#收益率的计算
df.pct_change()#不同的风险敞口进入投资组合
percentage * exposures
ptf_percentage = value_ptf['投资组合的价值'] 。
np.percentile(ptf_percentage, .01)print ("99.99%的实际损失不会超过:" round(VaR, 2)print ("预计损失将超过" + (ptf_percentage)) + "超过" ptf_percentage)) + "天数")

 

 

期望损失(Expected Shortfall)

接下来我们讨论另一个基本指标的重要性:期望损失(Expected Shortfall)。

在搜索VAR相关文献时,你会发现有很多关于VAR作为市场风险衡量标准的批评意见。你不可避免地看到期望损失(ES)被提出来作为一种替代。
这两者之间有什么区别呢?

假设我们在99%的置信水平下评估我们的VAR(或者简单地说,潜在的损失),我们将有一系列的损失结果在1%的尾部,

VAR回答了问题:在1%的尾部,整个结果范围内的最小损失是多少?
ES回答了问题:在1%的尾部,整个结果范围内的平均损失是多少?

首先,VaR。

VAR

如果X是h天的收益,那么,其中。例如,对于h=10天的收益,,我们可以从正态分布中计算出99%的风险值,如下所示

h = 10. # 为10天
mu_h = 0.1 # 这是10天内收益率的平均值 - 10%。
sig = 0.3 # 这是一年内收益率的波动 - 30%。VaR_n = normppf(1-alpha)*sig_h - mu_h 


以上是参数化的VaR,这意味着我们假设有一定的收益分布。在使用VAR时,通常会使用经验性的VaR,它不假设任何分布形状。在这些情况下,获得VaR只是一个简单的问题,即获得必要的百分数。

条件VaR/期望损失EXPECTED SHORTFALL

考虑到VaR,我们可以通过以下方式定义条件VaR,或CVaR或期望损失。


对这一点的解释很简单。基本上,它是X的期望值(平均值)。

如果我们再假设一个正态分布,我们可以应用以下公式

其中是正态分布,是标准正态分布的四分位数。

接下来是ES。

# 与上述参数相同
alpha**-1 * norm.pdf(norm.ppf(alpha))*sig_h - mu_h

我们不一定要假设正态分布。

上述假设为正态分布,但我们也可以应用学生-T分布。得到等价公式的推导涉及到了这个问题。然而,我们可以通过以下公式计算学生-T分布下的等效风险值

我们也可以假设一个T分布。 

nu = 5 # 自由度,越大,越接近于正态分布
print("99% CVaR ", (CVaR_t*100,2)

自由度越大,越接近于正态分布。

# 验证正态分布和Student-t VAR是一样的
nu = 10000000 # 自由度,越大,越接近于正态分布print("99% VaR", round(VaR_t*100,2))

我们可以用实际的市场数据计算出类似的结果。首先,将数据拟合为正态分布和t分布。 

mu_norm, sig_norm = norm.fit(returns

而各自的VaR和ES可以很容易地计算出来。

绘制具有不同自由度的VaR和CVaR图表

plt.plot(d[0], d[1]*100
plt.plot(np.arange(5, 100), VaR_n*np.ones(95)*100

VaR_n = norm.ppf(1-alpha)*sig_norm -munorm

可以很好地了解VaR和ES之间区别的图表如下。

Python确实是一个强大的工具,用于计算和数据可视化。它允许你导入几个不同的预包装库,大大降低了其他代码(如C++)的复杂性。



http://chatgpt.dhexx.cn/article/c7pk8InM.shtml

相关文章

金融数据分析 实验四 金融风险价值计算

实验原理 VaR的定义:在正常的市场条件下,给定置信水平和持有期,某种投资组合可能发生的最大损失值。 VaR模型不仅描述了损失的大小,还描述了发生损失的概率。 VaR的数学定义:给定置信水平 1 - α 和时间间隔 t ,如果一…

【视频】风险价值VaR原理与Python蒙特卡罗Monte Carlo模拟计算投资组合实例

最近我们被客户要求撰写关于风险价值VaR的研究报告,包括一些图形和统计输出。 什么是风险价值(VaR)? 风险价值 (VaR) 是一种统计数据,用于量化公司、投资组合在特定时间范围内可能发生的财务损失程度。该指标最常被投…

金融分析与风险管理——风险价值(VaR)

金融分析与风险管理——风险价值(VaR) 1. 风险价值(VaR)简述1.1 Python可视化风险价值 2. VaR值的测度方法2.1 方差-协方差法2.2 历史模拟法2.3 蒙特卡洛模拟法 3. 回溯检验4. 压力VaR 1. 风险价值(VaR)简述…

python是动态语言还是静态语言?强类型语言还是弱类型语言

首先要清楚静态类型语言和动态类型语言的判别的标准 定义:如果类型检查发生在编译阶段(compile time),那么是静态类型语言(statically typed languages)中,相反的,如果类型检查发生在运行阶段(run time),那么是动态类型…

Typescript笔记之基础知识(1):强类型语言和弱类型语言、静态语言和动态语言

foreword(前言) 这是本人关于Typescript的第一篇笔记,之所以选择将“强类型语言和弱类型语言、静态语言和动态语言”作为第一个想要去总结的主题,是因为个人觉得它很重要。 如今这个年代,可以供我们选择的编程语言非常…

编程语言的执行方式、静态语言和脚本语言

计算机执行源程序的两种方式是编译和解释 源代码:采用某种编程语言编写的计算机程序,人类可读 目标代码:计算机可以直接执行,大部分人类不可读,如:1110000111001010 编译 编译是讲源代码一次性转换为目标代…

程序的两种执行方式,静态语言和脚本语言

程序的两种执行方式,静态语言和脚本语言 文章目录 程序的两种执行方式,静态语言和脚本语言编译和解释静态语言和脚本语言 编译和解释 编译:将源代码一次性转换成目标代码的过程。(编译一次后,若需再次执行程序就可以直…

静态语言和脚本语言的区别

在计算机编程语言中,可以将编程语言分为静态语言和脚本语言两类,这两类编程语言最主要的区别是执行方式的不同。想要区分静态语言和脚本语言的区别,首先需要区分编译和解释。 编译和解释 编译是指将源代码一次性转换为目标代码的过程&#…

Java是动态语言还是静态语言,是强类型还是弱类型?

一. 前言 今天小熙突然想到一个问题,那就是Java到底是动态语言还是静态语言,是强类型还是弱类型呢?虽然知道但是还是不够深入,接下来就一起探讨下吧。 二. 图释 小熙碰巧看到一张图,完美的区分了以上的问题&#xf…

高级数据结构—斐波那契堆与二项堆详细介绍

斐波那契堆与二项堆 二项堆请点击这里👈 数据结构与堆斐波那契堆概述结构实现符号定义插入结点合并抽取最小结点分析Decrease Key第一种情况 删除最大度数的界 二项堆请点击这里👈 数据结构与堆 下图列出了小顶堆在各种数据结构(链表、二叉堆、二项堆、…

数据结构——斐波那契堆

斐波那契堆的介绍 斐波那契堆(Fibonacci heap)是一种可合并堆,可用于实现合并优先队列。它比二项堆具有更好的平摊分析性能,它的合并操作的时间复杂度是O(1)。与二项堆一样,它也是由一组堆最小有序树组成,并且是一种可合并堆。与二…

《算法导论3rd第十九章》斐波那契堆

前言 第六章堆排序使用了普通的二叉堆性质。其基本操作性能相当好,但union性能相当差。 对于一些图算法问题,EXTRACT-MIN 和DELETE操作次数远远小于DECREASE-KEY。因此有了斐波那契堆。 斐波那契堆结构 斐波那契堆是一系列具有最小堆序的有根树的集合…

斐波那契堆(Fibonacci heaps)

一:斐波那契堆 1:特性 斐波那契堆同二项堆一样,也是一种可合并堆。斐波那契堆的优势是:不涉及删除元素的操作仅需要O(1)的平摊运行时间(关于平摊分析的知识建议看《算法导论》第17章)。和二项…

3.3 斐波那契堆

结构 斐波那契堆的基础是可合并堆。 数据结构是一个森林。也就是N棵树。这点和二项堆一样。 这个结构没有二项堆那么多的要求。 Rank的概念,是子节点的数目 与二项堆不同的是,斐波那契堆的底层链表要成环,要双向链表。   而斐波那契堆的节点&#xff…

二叉堆/二项堆/斐波那契堆

二叉堆 二叉树 二叉树:是树的一种,主要的特点是二叉树的所有节点最多只有两个叶节点。除此之外没有别的要求完全二叉树:就是在二叉树当中,除了最后一层之外,所有层的节点都有满的,且最后一层的节点也是从…

斐波那契堆(Fibonacci heap)原理详解

前言 斐波那契堆(Fibonacci heap)是计算机科学中最小堆有序树的集合。它和二项式堆有类似的性质,但比二项式堆有更好的均摊时间。堆的名字来源于斐波那契数,它常用于分析运行时间。 堆结构介绍 基本术语介绍: 关键字:堆节点储存的…

斐波那契堆 - 解析与实现

概要 本章介绍斐波那契堆。和以往一样,本文会先对斐波那契堆的理论知识进行简单介绍,然后给出C语言的实现。后续再分别给出C和Java版本的实现;实现的语言虽不同,但是原理如出一辙,选择其中之一进行了解即可。若文章有…

算法导论 斐波那契堆

算法导论 斐波那契堆 定义 堆H 最小结点min:指向最小关键字key的根结点n表示当前堆中结点的个数 结点x 最小堆性质:每个结点的关键字key均大于等于父结点的关键字根链表:所有的根结点都通过left,right指针形成一个环形链表父类指针为p,左右兄…

斐波那契堆(Fibonacci heap)原理详解(附java代码实现)

前言 斐波那契堆(Fibonacci heap)是计算机科学中最小堆有序树的集合。它和二项式堆有类似的性质,但比二项式堆有更好的均摊时间。堆的名字来源于斐波那契数,它常用于分析运行时间。 堆结构介绍 基本术语介绍: 关键字:堆节点储存的…

斐波那契堆

斐波那契堆 作者: 大树先生 博客: http://blog.csdn.net/koala_tree GitHub:https://github.com/koalatree 2017 年 09 月 13 日 自《算法导论》. 斐波那契堆有两种用途:第一种,支持一系列操作,这些操作…