SENet

article/2025/9/19 18:56:23

这篇文章出自《Squeeze-and-Excitation Networks》,在ILSVRC-2017分类挑战赛上获得了冠军。

1. 研究问题

大多数CNN都研究如何捕获特征的空间相关性来提高网络的表示能力,这篇文章研究的是捕获特征通道之间的相关性来提高网络性能。

2. 研究方法

提出了一个Squeeze-and-Excitation block(挤压-激励模块),如图所示。

在这里插入图片描述
首先,对输入进行卷积操作:

在这里插入图片描述
从公式可以看到,通道相关性隐含在卷积核v_c中,它是隐式和局部的(除了顶层特征)。这篇文章是在网络中显式的捕获通道相关性。分为以下两步。

Squeeze: Global Information Embedding

在这里插入图片描述
每个通道进行全局平均池化,得到通道的全局信息统计量,这些信息可以表达整个图像。

Excitation: Adaptive Recalibration

利用Squeeze模块提取的全局统计量,来捕获通道间的相关性。这里采用了简单的带sigmoid激活的门控机制。
在这里插入图片描述
这里含有两个全连接层,先降维,在升维,以降低模型复杂度和提高泛化能力。这里的s输出的就是每个通道的权重。用权重乘以U的每个通道得到输出SE模块的输出结果。

在这里插入图片描述

该输出结果可以作为后面层的输入。

SE模块可以看成是对通道的一种自注意力函数,将重要的特征加以突出,而弱化无用的特征,以提升网络的性能。

SENet

SE模块可以集成到现有的标准架构中。文章将SE模块集成到了Inception和ResNet等网络中。

在这里插入图片描述
在这里插入图片描述
增加的SE模块是轻量级的,每个SE模块只有两个全连接层的参数,增加了少量的计算复杂度,但带来了性能的较大提升。

3. 实验结果

SENet在多个视觉任务中都取得了比对应标准网络更好的性能,并且在训练过程中带来了稳定的提升,而代价仅仅是增加了几乎可忽略不计的计算复杂度。

4. 结论

SE模块可以显式捕获通道相关性,将注意力集中于重要特征上,从而提高了网络的表示能力。


http://chatgpt.dhexx.cn/article/P5VOrLKk.shtml

相关文章

SENET和GateNet(推荐系统(embedding))

SENET介绍 SENET是在论文《Squeeze-and-Excitation Networks》中提出来的,应用在图像处理上的。主要思想:通过建模channel之间的关系来矫正channel的特征,以此提升神经网络的表征能力。(原文:adaptively recalibrates…

SENet解析

1 前言 在深度学习领域,CNN分类网络的发展对其它计算机视觉任务如目标检测和语义分割都起到至关重要的作用,因为检测和分割模型通常是构建在CNN分类网络(称为backbone)之上。提到CNN分类网络,我们所熟知的是VGG&#…

SENet详解

SENet是ImageNet 2017(ImageNet收官赛)的冠军模型,和ResNet的出现类似,都在很大程度上减小了之前模型的错误率(具体见附录),并且复杂度低,新增参数和计算量小。下面就来具体介绍一些…

SENet概览

一、背景 在深度学习领域,已经有很多成果通过在空间维度上对网络的性能进行了提升。但是,SENet反其道而行之,通过对通道关系进行建模来提升网络的性能。Squeeze和Excitation是两个非常关键的操作,所以SENet以此来命名。SENet的动机…

深度学习理论篇之 ( 十八) -- 注意力机制之SENet

科普知识 ILSVRC(ImageNet Large Scale Visual Recognition Challenge)是机器视觉领域最受追捧也是最具权威的学术竞赛之一,代表了图像领域的最高水平。 ImageNet数据集是ILSVRC竞赛使用的是数据集,由斯坦福大学李飞飞教授主导&am…

【深度学习】(8) CNN中的通道注意力机制(SEnet、ECAnet),附Tensorflow完整代码

各位同学好,今天和大家分享一下attention注意力机制在CNN卷积神经网络中的应用,重点介绍三种注意力机制,及其代码复现。 在我之前的神经网络专栏的文章中也使用到过注意力机制,比如在MobileNetV3、EfficientNet网络中都是用了SE注…

[ 注意力机制 ] 经典网络模型1——SENet 详解与复现

🤵 Author :Horizon Max ✨ 编程技巧篇:各种操作小结 🎇 机器视觉篇:会变魔术 OpenCV 💥 深度学习篇:简单入门 PyTorch 🏆 神经网络篇:经典网络模型 💻 …

算法 雪花算法 Python

Twitter 于 2010 年开源了内部团队在用的一款全局唯一 ID 生成算法 Snowflake,翻译过来叫做雪花算法。Snowflake 不借助数据库,可直接由编程语言生成,它通过巧妙的位设计使得 ID 能够满足递增属性,且生成的 ID 并不是依次连续的。…

聊聊雪花算法?

随便聊聊 哈喽,大家好,最近换了份工作,虽然后端技术栈是老了点,但是呢,这边的前端技术确是现在市面上最新的那一套技术:Vue3ViteTSXPinaElement-PlusNativeUI。我本人主要是学后端的,确被拉去做…

雪花算法生成实例

雪花算法生成实例 一、集群高并发情况下如何保证分布式唯一全局id生成?1.1 为什么需要分布式全局唯一ID以及分布式ID的业务需求1.2 ID生成规则部分硬性要求1.3 ID号生成系统的可用性要求 二、一般通用方案2.1 UUID2.2 数据库自增主键2.3 基于Redis生成全局id策略2.4…

算法 —— 雪花算法

文章目录 算法 —— 雪花算法简介实现原理结构图 算法 —— 雪花算法 简介 雪花算法是由 Twitter 公布的分布式主键生成算法,它能够保证不同进程主键的不重复性,以及相同进程主键的有序性。 实现原理 在同一个进程中,它首先是通过时间位保…

java雪花算法实现

基于雪花算法(Snowflake)模式雪花算法(Snowflake)是twitter公司内部分布式项目采用的ID生成算法,开源后广受国内大厂的好评,在该算法影响下各大公司相继开发出各具特色的分布式生成器。 Snowflake生成的是L…

雪花算法的实现原理

一位工作4年的小伙伴,去某东面试时被问到这样一道题,说请你简述一下雪花算法的实现原理。屏幕前的小伙伴,如果你遇到这个问题,你会怎么回答? 今天,我给大家分享一下我的理解。 1、什么是雪花算法 雪花算…

Python 实现雪花算法

Python 实现雪花算法 雪花算法:雪花算法是一种分布式全局唯一ID,一般不需要过多的深入了解,一般个人项目用不到分布式之类的大型架构,另一方面,则是因为,就算用到市面上很多 ID 生成器帮我们完成了这项工作…

雪花算法简介以及代码实现

文章目录 雪花算法分布式ID分布式ID需要满足的要求全局唯一:高性能:高可用:方便易用:安全:有序递增:要求具体的业务含义:独立部署: 组成代码实现Java代码实现Go语言实现 雪花算法 简介: 雪花算法是Twitter开源的分布式ID生成算法 Github仓库地址 雪花算法主要用于分布式系统中…

雪花算法(id生成算法)

SnowFlake 雪花算法 SnowFlake 中文意思为雪花,故称为雪花算法。最早是 Twitter 公司在其内部用于分布式环境下生成唯一 ID。在2014年开源 scala 语言版本。 实现原理 雪花算法原理就是生成一个的64位比特位的 long 类型的唯一 id。 最高1位固定值0&#xff0c…

什么是雪花算法?啥原理?

1、SnowFlake核心思想 SnowFlake 算法,是 Twitter 开源的分布式 ID 生成算法。 其核心思想就是:使用一个 64 bit 的 long 型的数字作为全局唯一 ID。在分布式系统中的应用十分广泛,且 ID 引入了时间戳,基本上保持自增的&#xf…

雪花算法-java

前言: 👏作者简介:我是笑霸final,一名热爱技术的在校学生。 📝个人主页:个人主页1 || 笑霸final的主页2 📕系列专栏:计算机基础专栏 📧如果文章知识点有错误的地方&#…

数据库中雪花算法是什么?

一、为何要用雪花算法 1、问题产生的背景 现如今越来越多的公司都在用分布式、微服务,那么对应的就会针对不同的服务进行数据库拆分,然后当数据量上来的时候也会进行分表,那么随之而来的就是分表以后id的问题。 例如之前单体项目中一个表中…

snowflake算法(雪花算法)

snowflake算法(雪花算法) 1.snowflake算法介绍 Snowflake算法产生是为了满足Twitter每秒上万条消息的请求,每条消息都必须分配一条唯一的id,这些id还需要一些大致的顺序(方便客户端排序),并且在分布式系统中不同机器…