SENet概览

article/2025/9/19 18:57:46

一、背景

    在深度学习领域,已经有很多成果通过在空间维度上对网络的性能进行了提升。但是,SENet反其道而行之,通过对通道关系进行建模来提升网络的性能。Squeeze和Excitation是两个非常关键的操作,所以SENet以此来命名。SENet的动机是希望显式地建模特征通道之间的相互依赖关系,具体来说,就是通过学习的方式来自动获取每个通道的重要程度,然后依照这个重要程度去提升有用的特征并抑制对当前任务用处不大的特征。

二、结构

 

    给定一个输入 x,其特征通道数为 c_1,通过一系列卷积等一般变换后得到一个特征通道数为 c_2 的特征。与传统的CNN不一样的是,接下来通过三个操作来重标定前面得到的特征。

    1) Squeeze(压缩)。顺着空间维度来进行特征压缩,将每个二维的特征通道变成一个实数,这个实数某种程度上具有全局的感受野,并且输出的维度和输入的特征通道数相匹配。它表征着在特征通道上响应的全局分布,而且使得靠近输入的层也可以获得全局的感受野,这一点在很多任务中都是非常有用。

    2) Excitation(激发)。它是一个类似于循环神经网络中门的机制。通过参数来为每个特征通道生成权重,其中参数被学习用来显式地建模特征通道间的相关性。

    3)Reweight(缩放)。将Excitation的输出的权重看做是进过特征选择后的每个特征通道的重要性,然后通过乘法逐通道加权到先前的特征上,完成在通道维度上的对原始特征的重标定。

三、结构融合

    如下是SE模块与Inception和ResNet融合的结构示意图。

  

    上左图是将SE模块嵌入到Inception结构的示例。方框旁边的维度代表该层的输出。这里使用Alobal Average Pooling作为Squeeze操作。紧接着两个Fully Connected层组成一个Bottleneck结构去建模通道间的相关性,并输出和输入特征同样数目的权重。首先将特征维度降低到输入的1/16,然后经过ReLu激活后再通过一个Fully Connected层升回到原来的维度。这样做比直接用一个Fully Connected层的好处在于:

    1)具有更多的非线性,可以更好地拟合通道间复杂的相关性;

    2)减少了参数量和计算量。然后通过一个Sigmoid的门获得0~1之间归一化的权重,最后通过一个Scale的操作来将归一化后的权重加权到每个通道的特征上。

    右图是SE模块嵌入到ResNet的示例。操作过程基本和SE-Inception一样,只不过是在Addition前对分支上Residual的特征进行了特征重标定。如果对Addition后主支上的特征进行重标定,由于在主干上存在0~1的scale操作,在网络较深BP优化时就会在靠近输入层容易出现梯度消散的情况,导致模型难以优化

 

四、运算效率

    实验表明,SE模块在参数量上的增加带来的计算量增长微乎其微,但是性能却有所提升,当然这也取决于实际应用,如果因为SE模块导致参数量增加的掠夺,可以针对性的在适当的位置削减SE模块的数量,而精度几乎不受影响。

    以ResNet-50和SE-ResNet-50对比举例来说,SE-ResNet-50相对于ResNet-50有着10%模型参数的增长。额外的模型参数都存在于Bottleneck设计的两个Fully Connected中,由于ResNet结构中最后一个stage的特征通道数目为2048,导致模型参数有着较大的增长,实验发现移除掉最后一个stage中3个build block上的SE设定,可以将10%参数量的增长减少到2%。此时模型的精度几乎无损失。

五、消融实验

    压缩率。这个要根据骨干网去调整,不要盲目在所有位置使用相同的压缩率 \gamma ,因为不同的层有着不同的抽象程度

    激发部分的激活函数。实验表明Sigmod最优,Relu最差。

    SE在不同Stage中的作用。不同层的SE在功能上是互补的,处在不同层的多个SE模块的组合可进一步提升模型性能。

 


http://chatgpt.dhexx.cn/article/HF3nZJ8x.shtml

相关文章

深度学习理论篇之 ( 十八) -- 注意力机制之SENet

科普知识 ILSVRC(ImageNet Large Scale Visual Recognition Challenge)是机器视觉领域最受追捧也是最具权威的学术竞赛之一,代表了图像领域的最高水平。 ImageNet数据集是ILSVRC竞赛使用的是数据集,由斯坦福大学李飞飞教授主导&am…

【深度学习】(8) CNN中的通道注意力机制(SEnet、ECAnet),附Tensorflow完整代码

各位同学好,今天和大家分享一下attention注意力机制在CNN卷积神经网络中的应用,重点介绍三种注意力机制,及其代码复现。 在我之前的神经网络专栏的文章中也使用到过注意力机制,比如在MobileNetV3、EfficientNet网络中都是用了SE注…

[ 注意力机制 ] 经典网络模型1——SENet 详解与复现

🤵 Author :Horizon Max ✨ 编程技巧篇:各种操作小结 🎇 机器视觉篇:会变魔术 OpenCV 💥 深度学习篇:简单入门 PyTorch 🏆 神经网络篇:经典网络模型 💻 …

算法 雪花算法 Python

Twitter 于 2010 年开源了内部团队在用的一款全局唯一 ID 生成算法 Snowflake,翻译过来叫做雪花算法。Snowflake 不借助数据库,可直接由编程语言生成,它通过巧妙的位设计使得 ID 能够满足递增属性,且生成的 ID 并不是依次连续的。…

聊聊雪花算法?

随便聊聊 哈喽,大家好,最近换了份工作,虽然后端技术栈是老了点,但是呢,这边的前端技术确是现在市面上最新的那一套技术:Vue3ViteTSXPinaElement-PlusNativeUI。我本人主要是学后端的,确被拉去做…

雪花算法生成实例

雪花算法生成实例 一、集群高并发情况下如何保证分布式唯一全局id生成?1.1 为什么需要分布式全局唯一ID以及分布式ID的业务需求1.2 ID生成规则部分硬性要求1.3 ID号生成系统的可用性要求 二、一般通用方案2.1 UUID2.2 数据库自增主键2.3 基于Redis生成全局id策略2.4…

算法 —— 雪花算法

文章目录 算法 —— 雪花算法简介实现原理结构图 算法 —— 雪花算法 简介 雪花算法是由 Twitter 公布的分布式主键生成算法,它能够保证不同进程主键的不重复性,以及相同进程主键的有序性。 实现原理 在同一个进程中,它首先是通过时间位保…

java雪花算法实现

基于雪花算法(Snowflake)模式雪花算法(Snowflake)是twitter公司内部分布式项目采用的ID生成算法,开源后广受国内大厂的好评,在该算法影响下各大公司相继开发出各具特色的分布式生成器。 Snowflake生成的是L…

雪花算法的实现原理

一位工作4年的小伙伴,去某东面试时被问到这样一道题,说请你简述一下雪花算法的实现原理。屏幕前的小伙伴,如果你遇到这个问题,你会怎么回答? 今天,我给大家分享一下我的理解。 1、什么是雪花算法 雪花算…

Python 实现雪花算法

Python 实现雪花算法 雪花算法:雪花算法是一种分布式全局唯一ID,一般不需要过多的深入了解,一般个人项目用不到分布式之类的大型架构,另一方面,则是因为,就算用到市面上很多 ID 生成器帮我们完成了这项工作…

雪花算法简介以及代码实现

文章目录 雪花算法分布式ID分布式ID需要满足的要求全局唯一:高性能:高可用:方便易用:安全:有序递增:要求具体的业务含义:独立部署: 组成代码实现Java代码实现Go语言实现 雪花算法 简介: 雪花算法是Twitter开源的分布式ID生成算法 Github仓库地址 雪花算法主要用于分布式系统中…

雪花算法(id生成算法)

SnowFlake 雪花算法 SnowFlake 中文意思为雪花,故称为雪花算法。最早是 Twitter 公司在其内部用于分布式环境下生成唯一 ID。在2014年开源 scala 语言版本。 实现原理 雪花算法原理就是生成一个的64位比特位的 long 类型的唯一 id。 最高1位固定值0&#xff0c…

什么是雪花算法?啥原理?

1、SnowFlake核心思想 SnowFlake 算法,是 Twitter 开源的分布式 ID 生成算法。 其核心思想就是:使用一个 64 bit 的 long 型的数字作为全局唯一 ID。在分布式系统中的应用十分广泛,且 ID 引入了时间戳,基本上保持自增的&#xf…

雪花算法-java

前言: 👏作者简介:我是笑霸final,一名热爱技术的在校学生。 📝个人主页:个人主页1 || 笑霸final的主页2 📕系列专栏:计算机基础专栏 📧如果文章知识点有错误的地方&#…

数据库中雪花算法是什么?

一、为何要用雪花算法 1、问题产生的背景 现如今越来越多的公司都在用分布式、微服务,那么对应的就会针对不同的服务进行数据库拆分,然后当数据量上来的时候也会进行分表,那么随之而来的就是分表以后id的问题。 例如之前单体项目中一个表中…

snowflake算法(雪花算法)

snowflake算法(雪花算法) 1.snowflake算法介绍 Snowflake算法产生是为了满足Twitter每秒上万条消息的请求,每条消息都必须分配一条唯一的id,这些id还需要一些大致的顺序(方便客户端排序),并且在分布式系统中不同机器…

分布式ID生成算法——雪花算法

一、分布式ID ID可以唯一标识一条记录。 对于单体架构,我们可以使用自增ID来保证ID的唯一性。但是,在分布式系统中,简单的使用自增ID就会导致ID冲突。这也就引出了分布式ID问题。分布式ID也要求满足分布式系统的高性能、高可用、高并发的特点…

【SnowFlake】雪花算法(Java版本)

SnowFlake雪花算法(Java版本) 一、SnowFlake算法二、代码实现三、应用场景四、优缺点五、分布式生成ID方式 一、SnowFlake算法 雪花算法(Snowflake)是twitter公司内部分布式项目采用的ID生成算法 Snowflake生成的是Long类型的ID,一个Long类型…

雪花算法以及具体实现

一、为何要用雪花算法 1、问题产生的背景 现如今越来越多的公司都在用分布式、微服务,那么对应的就会针对不同的服务进行数据库拆分,然后当数据量上来的时候也会进行分表,那么随之而来的就是分表以后id的问题。 例如之前单体项目中一个表中的…

什么是雪花算法,详解雪花算法原理

雪花算法(SnowFlake) 雪花算法是Twitter开源的分布式ID生成算法. 主要是由64bit的long型生成的全局ID,引入了时间戳和ID保持自增的属性. 64bit分为四个部分: 第一个部分是1bit, 这不 使用,没有意义; 第二个部分是41bit, 组成时间戳; 第三个部分是10bit, 工作机器ID,里面分为…