[ 注意力机制 ] 经典网络模型1——SENet 详解与复现

article/2025/9/19 19:19:50

🤵 Author :Horizon Max

编程技巧篇:各种操作小结

🎇 机器视觉篇:会变魔术 OpenCV

💥 深度学习篇:简单入门 PyTorch

🏆 神经网络篇:经典网络模型

💻 算法篇:再忙也别忘了 LeetCode


[ 注意力机制 ] 经典网络模型1——SENet 详解与复现

  • 🚀 Squeeze-and-Excitation Networks
  • 🚀 SENet 详解
    • 🎨 Squeeze-and-Excitation block
      • 🚩 Squeeze: Global Information Embedding
      • 🚩 Excitation: Adaptive Recalibration
      • 🚩 在非残差网络中的应用
      • 🚩 在残差网络中的应用
  • 🚀 SENet 复现

🚀 Squeeze-and-Excitation Networks

Squeeze :挤压     Excitation :激励 ;

Squeeze-and-Excitation Networks 简称 SENet ,由 Momenta 和 牛津大学 的Jie Hu等人 提出的一种新的网络结构;

目标是通过建模 卷积特征通道之间的相互依赖关系 来提高网络的表示能力;

在2017年最后一届 ImageNet 挑战赛(ILSVRC) classification 任务中获得 冠军,将错误率降低到 2.251% ;

🔗 论文地址:Squeeze-and-Excitation Networks


🚀 SENet 详解

🎨 Squeeze-and-Excitation block

Squeeze-and-Excitation block

 Squeeze-and-Excitation block

对于任意给定的变换: Ftr :X → U ,其中 X ∈ R H’xW’xC’ , U ∈ R HxWxCFtr 用作一个卷积算子 ;


🚩 Squeeze: Global Information Embedding

挤压:全局信息嵌入

(1)Squeeze :特征U通过 squeeze 压缩操作,将跨空间维度H × W的特征映射进行聚合,生成一个通道描述符,HxWxC → 1x1xC
将 全局空间信息 压缩到上述 通道描述符 中,使来这些 通道描述符 可以被 其输入的层 利用,这里采用的是 global average pooling

Squeeze

🚩 Excitation: Adaptive Recalibration

激励:自适应调整

(2)Excitation :每个通道通过一个 基于通道依赖 的自选门机制 来学习特定样本的激活,使其学会使用全局信息,有选择地强调信息特征,并抑制不太有用的特征,这里采用的是 sigmoid ,并在中间嵌入了 ReLU 函数用于限制模型的复杂性和帮助训练 ;

通过 两个全连接层(FC) 构成的瓶颈来参数化门控机制,即 W1 用于降低维度,W2 用于维度递增 ;

Excitation

(3)Reweight :将 Excitation 输出的权重通过乘法逐通道加权到输入特征上;


总的来说 SE Block 就是在 Layer 的输入和输出之间添加结构: global average pooling - FC - ReLU - FC- sigmoid

SE block 的灵活性意味着它可以直接应用于标准卷积以外的转换,通过将 SE block 集成到任何复杂模型当中来开发SENet;


🚩 在非残差网络中的应用

应用于 非残差网络 Inception network 当中,形成 SE-Inception module

非残差网络结构框图(Inception block)

SE-Inception Module

Scale : 改变(文字、图片)的尺寸大小

🚩 在残差网络中的应用

应用于 残差网络 Residual network 当中,形成 SE-ResNet module


残差网络结构框图(Residual Block)

SE-ResNet Module

论文中对 SE block 的应用用于实验对比:

SE-ResNet-50 网络的准确性优于 ResNet-50 和模型深化版的 ResNet101 网络 ;
对于224 × 224像素的输入图像,ResNet-50 需要164 ms,而 SE-ResNet-50 需要167 ms ;


🚀 SENet 复现

这里实现的是 SE-ResNet 系列网络 :

# Here is the code :import torch
import torch.nn as nn
import torch.nn.functional as F
from torchinfo import summaryclass SE_Block(nn.Module):                         # Squeeze-and-Excitation blockdef __init__(self, in_planes):super(SE_Block, self).__init__()self.avgpool = nn.AdaptiveAvgPool2d((1, 1))self.conv1 = nn.Conv2d(in_planes, in_planes // 16, kernel_size=1)self.relu = nn.ReLU()self.conv2 = nn.Conv2d(in_planes // 16, in_planes, kernel_size=1)self.sigmoid = nn.Sigmoid()def forward(self, x):x = self.avgpool(x)x = self.conv1(x)x = self.relu(x)x = self.conv2(x)out = self.sigmoid(x)return outclass BasicBlock(nn.Module):      # 左侧的 residual block 结构(18-layer、34-layer)expansion = 1def __init__(self, in_planes, planes, stride=1):      # 两层卷积 Conv2d + Shutcutssuper(BasicBlock, self).__init__()self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3,stride=stride, padding=1, bias=False)self.bn1 = nn.BatchNorm2d(planes)self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,stride=1, padding=1, bias=False)self.bn2 = nn.BatchNorm2d(planes)self.SE = SE_Block(planes)           # Squeeze-and-Excitation blockself.shortcut = nn.Sequential()if stride != 1 or in_planes != self.expansion*planes:      # Shutcuts用于构建 Conv Block 和 Identity Blockself.shortcut = nn.Sequential(nn.Conv2d(in_planes, self.expansion*planes,kernel_size=1, stride=stride, bias=False),nn.BatchNorm2d(self.expansion*planes))def forward(self, x):out = F.relu(self.bn1(self.conv1(x)))out = self.bn2(self.conv2(out))SE_out = self.SE(out)out = out * SE_outout += self.shortcut(x)out = F.relu(out)return outclass Bottleneck(nn.Module):      # 右侧的 residual block 结构(50-layer、101-layer、152-layer)expansion = 4def __init__(self, in_planes, planes, stride=1):      # 三层卷积 Conv2d + Shutcutssuper(Bottleneck, self).__init__()self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)self.bn1 = nn.BatchNorm2d(planes)self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,stride=stride, padding=1, bias=False)self.bn2 = nn.BatchNorm2d(planes)self.conv3 = nn.Conv2d(planes, self.expansion*planes,kernel_size=1, bias=False)self.bn3 = nn.BatchNorm2d(self.expansion*planes)self.SE = SE_Block(self.expansion*planes)           # Squeeze-and-Excitation blockself.shortcut = nn.Sequential()if stride != 1 or in_planes != self.expansion*planes:      # Shutcuts用于构建 Conv Block 和 Identity Blockself.shortcut = nn.Sequential(nn.Conv2d(in_planes, self.expansion*planes,kernel_size=1, stride=stride, bias=False),nn.BatchNorm2d(self.expansion*planes))def forward(self, x):out = F.relu(self.bn1(self.conv1(x)))out = F.relu(self.bn2(self.conv2(out)))out = self.bn3(self.conv3(out))SE_out = self.SE(out)out = out * SE_outout += self.shortcut(x)out = F.relu(out)return outclass SE_ResNet(nn.Module):def __init__(self, block, num_blocks, num_classes=1000):super(SE_ResNet, self).__init__()self.in_planes = 64self.conv1 = nn.Conv2d(3, 64, kernel_size=3,stride=1, padding=1, bias=False)                  # conv1self.bn1 = nn.BatchNorm2d(64)self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)       # conv2_xself.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)      # conv3_xself.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)      # conv4_xself.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)      # conv5_xself.avgpool = nn.AdaptiveAvgPool2d((1, 1))self.linear = nn.Linear(512 * block.expansion, num_classes)def _make_layer(self, block, planes, num_blocks, stride):strides = [stride] + [1]*(num_blocks-1)layers = []for stride in strides:layers.append(block(self.in_planes, planes, stride))self.in_planes = planes * block.expansionreturn nn.Sequential(*layers)def forward(self, x):x = F.relu(self.bn1(self.conv1(x)))x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = self.layer4(x)x = self.avgpool(x)x = torch.flatten(x, 1)out = self.linear(x)return outdef SE_ResNet18():return SE_ResNet(BasicBlock, [2, 2, 2, 2])def SE_ResNet34():return SE_ResNet(BasicBlock, [3, 4, 6, 3])def SE_ResNet50():return SE_ResNet(Bottleneck, [3, 4, 6, 3])def SE_ResNet101():return SE_ResNet(Bottleneck, [3, 4, 23, 3])def SE_ResNet152():return SE_ResNet(Bottleneck, [3, 8, 36, 3])def test():net = SE_ResNet50()y = net(torch.randn(1, 3, 224, 224))print(y.size())summary(net, (1, 3, 224, 224))if __name__ == '__main__':test()

输出结果:

torch.Size([1, 1000])
===============================================================================================
Layer (type:depth-idx)                        Output Shape              Param #
===============================================================================================
SE_ResNet                                     --                        --
├─Conv2d: 1-1                                 [1, 64, 224, 224]         1,728
├─BatchNorm2d: 1-2                            [1, 64, 224, 224]         128
├─Sequential: 1-3                             [1, 256, 224, 224]        --
│    └─Bottleneck: 2-1                        [1, 256, 224, 224]        --
│    │    └─Conv2d: 3-1                       [1, 64, 224, 224]         4,096
│    │    └─BatchNorm2d: 3-2                  [1, 64, 224, 224]         128
│    │    └─Conv2d: 3-3                       [1, 64, 224, 224]         36,864
│    │    └─BatchNorm2d: 3-4                  [1, 64, 224, 224]         128
│    │    └─Conv2d: 3-5                       [1, 256, 224, 224]        16,384
│    │    └─BatchNorm2d: 3-6                  [1, 256, 224, 224]        512
│    │    └─SE_Block: 3-7                     [1, 256, 1, 1]            8,464
│    │    └─Sequential: 3-8                   [1, 256, 224, 224]        16,896
│    └─Bottleneck: 2-2                        [1, 256, 224, 224]        --
│    │    └─Conv2d: 3-9                       [1, 64, 224, 224]         16,384
│    │    └─BatchNorm2d: 3-10                 [1, 64, 224, 224]         128
│    │    └─Conv2d: 3-11                      [1, 64, 224, 224]         36,864
│    │    └─BatchNorm2d: 3-12                 [1, 64, 224, 224]         128
│    │    └─Conv2d: 3-13                      [1, 256, 224, 224]        16,384
│    │    └─BatchNorm2d: 3-14                 [1, 256, 224, 224]        512
│    │    └─SE_Block: 3-15                    [1, 256, 1, 1]            8,464
│    │    └─Sequential: 3-16                  [1, 256, 224, 224]        --
│    └─Bottleneck: 2-3                        [1, 256, 224, 224]        --
│    │    └─Conv2d: 3-17                      [1, 64, 224, 224]         16,384
│    │    └─BatchNorm2d: 3-18                 [1, 64, 224, 224]         128
│    │    └─Conv2d: 3-19                      [1, 64, 224, 224]         36,864
│    │    └─BatchNorm2d: 3-20                 [1, 64, 224, 224]         128
│    │    └─Conv2d: 3-21                      [1, 256, 224, 224]        16,384
│    │    └─BatchNorm2d: 3-22                 [1, 256, 224, 224]        512
│    │    └─SE_Block: 3-23                    [1, 256, 1, 1]            8,464
│    │    └─Sequential: 3-24                  [1, 256, 224, 224]        --
├─Sequential: 1-4                             [1, 512, 112, 112]        --
│    └─Bottleneck: 2-4                        [1, 512, 112, 112]        --
│    │    └─Conv2d: 3-25                      [1, 128, 224, 224]        32,768
│    │    └─BatchNorm2d: 3-26                 [1, 128, 224, 224]        256
│    │    └─Conv2d: 3-27                      [1, 128, 112, 112]        147,456
│    │    └─BatchNorm2d: 3-28                 [1, 128, 112, 112]        256
│    │    └─Conv2d: 3-29                      [1, 512, 112, 112]        65,536
│    │    └─BatchNorm2d: 3-30                 [1, 512, 112, 112]        1,024
│    │    └─SE_Block: 3-31                    [1, 512, 1, 1]            33,312
│    │    └─Sequential: 3-32                  [1, 512, 112, 112]        132,096
│    └─Bottleneck: 2-5                        [1, 512, 112, 112]        --
│    │    └─Conv2d: 3-33                      [1, 128, 112, 112]        65,536
│    │    └─BatchNorm2d: 3-34                 [1, 128, 112, 112]        256
│    │    └─Conv2d: 3-35                      [1, 128, 112, 112]        147,456
│    │    └─BatchNorm2d: 3-36                 [1, 128, 112, 112]        256
│    │    └─Conv2d: 3-37                      [1, 512, 112, 112]        65,536
│    │    └─BatchNorm2d: 3-38                 [1, 512, 112, 112]        1,024
│    │    └─SE_Block: 3-39                    [1, 512, 1, 1]            33,312
│    │    └─Sequential: 3-40                  [1, 512, 112, 112]        --
│    └─Bottleneck: 2-6                        [1, 512, 112, 112]        --
│    │    └─Conv2d: 3-41                      [1, 128, 112, 112]        65,536
│    │    └─BatchNorm2d: 3-42                 [1, 128, 112, 112]        256
│    │    └─Conv2d: 3-43                      [1, 128, 112, 112]        147,456
│    │    └─BatchNorm2d: 3-44                 [1, 128, 112, 112]        256
│    │    └─Conv2d: 3-45                      [1, 512, 112, 112]        65,536
│    │    └─BatchNorm2d: 3-46                 [1, 512, 112, 112]        1,024
│    │    └─SE_Block: 3-47                    [1, 512, 1, 1]            33,312
│    │    └─Sequential: 3-48                  [1, 512, 112, 112]        --
│    └─Bottleneck: 2-7                        [1, 512, 112, 112]        --
│    │    └─Conv2d: 3-49                      [1, 128, 112, 112]        65,536
│    │    └─BatchNorm2d: 3-50                 [1, 128, 112, 112]        256
│    │    └─Conv2d: 3-51                      [1, 128, 112, 112]        147,456
│    │    └─BatchNorm2d: 3-52                 [1, 128, 112, 112]        256
│    │    └─Conv2d: 3-53                      [1, 512, 112, 112]        65,536
│    │    └─BatchNorm2d: 3-54                 [1, 512, 112, 112]        1,024
│    │    └─SE_Block: 3-55                    [1, 512, 1, 1]            33,312
│    │    └─Sequential: 3-56                  [1, 512, 112, 112]        --
├─Sequential: 1-5                             [1, 1024, 56, 56]         --
│    └─Bottleneck: 2-8                        [1, 1024, 56, 56]         --
│    │    └─Conv2d: 3-57                      [1, 256, 112, 112]        131,072
│    │    └─BatchNorm2d: 3-58                 [1, 256, 112, 112]        512
│    │    └─Conv2d: 3-59                      [1, 256, 56, 56]          589,824
│    │    └─BatchNorm2d: 3-60                 [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-61                      [1, 1024, 56, 56]         262,144
│    │    └─BatchNorm2d: 3-62                 [1, 1024, 56, 56]         2,048
│    │    └─SE_Block: 3-63                    [1, 1024, 1, 1]           132,160
│    │    └─Sequential: 3-64                  [1, 1024, 56, 56]         526,336
│    └─Bottleneck: 2-9                        [1, 1024, 56, 56]         --
│    │    └─Conv2d: 3-65                      [1, 256, 56, 56]          262,144
│    │    └─BatchNorm2d: 3-66                 [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-67                      [1, 256, 56, 56]          589,824
│    │    └─BatchNorm2d: 3-68                 [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-69                      [1, 1024, 56, 56]         262,144
│    │    └─BatchNorm2d: 3-70                 [1, 1024, 56, 56]         2,048
│    │    └─SE_Block: 3-71                    [1, 1024, 1, 1]           132,160
│    │    └─Sequential: 3-72                  [1, 1024, 56, 56]         --
│    └─Bottleneck: 2-10                       [1, 1024, 56, 56]         --
│    │    └─Conv2d: 3-73                      [1, 256, 56, 56]          262,144
│    │    └─BatchNorm2d: 3-74                 [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-75                      [1, 256, 56, 56]          589,824
│    │    └─BatchNorm2d: 3-76                 [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-77                      [1, 1024, 56, 56]         262,144
│    │    └─BatchNorm2d: 3-78                 [1, 1024, 56, 56]         2,048
│    │    └─SE_Block: 3-79                    [1, 1024, 1, 1]           132,160
│    │    └─Sequential: 3-80                  [1, 1024, 56, 56]         --
│    └─Bottleneck: 2-11                       [1, 1024, 56, 56]         --
│    │    └─Conv2d: 3-81                      [1, 256, 56, 56]          262,144
│    │    └─BatchNorm2d: 3-82                 [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-83                      [1, 256, 56, 56]          589,824
│    │    └─BatchNorm2d: 3-84                 [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-85                      [1, 1024, 56, 56]         262,144
│    │    └─BatchNorm2d: 3-86                 [1, 1024, 56, 56]         2,048
│    │    └─SE_Block: 3-87                    [1, 1024, 1, 1]           132,160
│    │    └─Sequential: 3-88                  [1, 1024, 56, 56]         --
│    └─Bottleneck: 2-12                       [1, 1024, 56, 56]         --
│    │    └─Conv2d: 3-89                      [1, 256, 56, 56]          262,144
│    │    └─BatchNorm2d: 3-90                 [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-91                      [1, 256, 56, 56]          589,824
│    │    └─BatchNorm2d: 3-92                 [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-93                      [1, 1024, 56, 56]         262,144
│    │    └─BatchNorm2d: 3-94                 [1, 1024, 56, 56]         2,048
│    │    └─SE_Block: 3-95                    [1, 1024, 1, 1]           132,160
│    │    └─Sequential: 3-96                  [1, 1024, 56, 56]         --
│    └─Bottleneck: 2-13                       [1, 1024, 56, 56]         --
│    │    └─Conv2d: 3-97                      [1, 256, 56, 56]          262,144
│    │    └─BatchNorm2d: 3-98                 [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-99                      [1, 256, 56, 56]          589,824
│    │    └─BatchNorm2d: 3-100                [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-101                     [1, 1024, 56, 56]         262,144
│    │    └─BatchNorm2d: 3-102                [1, 1024, 56, 56]         2,048
│    │    └─SE_Block: 3-103                   [1, 1024, 1, 1]           132,160
│    │    └─Sequential: 3-104                 [1, 1024, 56, 56]         --
├─Sequential: 1-6                             [1, 2048, 28, 28]         --
│    └─Bottleneck: 2-14                       [1, 2048, 28, 28]         --
│    │    └─Conv2d: 3-105                     [1, 512, 56, 56]          524,288
│    │    └─BatchNorm2d: 3-106                [1, 512, 56, 56]          1,024
│    │    └─Conv2d: 3-107                     [1, 512, 28, 28]          2,359,296
│    │    └─BatchNorm2d: 3-108                [1, 512, 28, 28]          1,024
│    │    └─Conv2d: 3-109                     [1, 2048, 28, 28]         1,048,576
│    │    └─BatchNorm2d: 3-110                [1, 2048, 28, 28]         4,096
│    │    └─SE_Block: 3-111                   [1, 2048, 1, 1]           526,464
│    │    └─Sequential: 3-112                 [1, 2048, 28, 28]         2,101,248
│    └─Bottleneck: 2-15                       [1, 2048, 28, 28]         --
│    │    └─Conv2d: 3-113                     [1, 512, 28, 28]          1,048,576
│    │    └─BatchNorm2d: 3-114                [1, 512, 28, 28]          1,024
│    │    └─Conv2d: 3-115                     [1, 512, 28, 28]          2,359,296
│    │    └─BatchNorm2d: 3-116                [1, 512, 28, 28]          1,024
│    │    └─Conv2d: 3-117                     [1, 2048, 28, 28]         1,048,576
│    │    └─BatchNorm2d: 3-118                [1, 2048, 28, 28]         4,096
│    │    └─SE_Block: 3-119                   [1, 2048, 1, 1]           526,464
│    │    └─Sequential: 3-120                 [1, 2048, 28, 28]         --
│    └─Bottleneck: 2-16                       [1, 2048, 28, 28]         --
│    │    └─Conv2d: 3-121                     [1, 512, 28, 28]          1,048,576
│    │    └─BatchNorm2d: 3-122                [1, 512, 28, 28]          1,024
│    │    └─Conv2d: 3-123                     [1, 512, 28, 28]          2,359,296
│    │    └─BatchNorm2d: 3-124                [1, 512, 28, 28]          1,024
│    │    └─Conv2d: 3-125                     [1, 2048, 28, 28]         1,048,576
│    │    └─BatchNorm2d: 3-126                [1, 2048, 28, 28]         4,096
│    │    └─SE_Block: 3-127                   [1, 2048, 1, 1]           526,464
│    │    └─Sequential: 3-128                 [1, 2048, 28, 28]         --
├─AdaptiveAvgPool2d: 1-7                      [1, 2048, 1, 1]           --
├─Linear: 1-8                                 [1, 1000]                 2,049,000
===============================================================================================
Total params: 28,080,344
Trainable params: 28,080,344
Non-trainable params: 0
Total mult-adds (G): 63.60
===============================================================================================
Input size (MB): 0.60
Forward/backward pass size (MB): 2691.18
Params size (MB): 112.32
Estimated Total Size (MB): 2804.10
===============================================================================================



http://chatgpt.dhexx.cn/article/LjZ9gXpo.shtml

相关文章

算法 雪花算法 Python

Twitter 于 2010 年开源了内部团队在用的一款全局唯一 ID 生成算法 Snowflake,翻译过来叫做雪花算法。Snowflake 不借助数据库,可直接由编程语言生成,它通过巧妙的位设计使得 ID 能够满足递增属性,且生成的 ID 并不是依次连续的。…

聊聊雪花算法?

随便聊聊 哈喽,大家好,最近换了份工作,虽然后端技术栈是老了点,但是呢,这边的前端技术确是现在市面上最新的那一套技术:Vue3ViteTSXPinaElement-PlusNativeUI。我本人主要是学后端的,确被拉去做…

雪花算法生成实例

雪花算法生成实例 一、集群高并发情况下如何保证分布式唯一全局id生成?1.1 为什么需要分布式全局唯一ID以及分布式ID的业务需求1.2 ID生成规则部分硬性要求1.3 ID号生成系统的可用性要求 二、一般通用方案2.1 UUID2.2 数据库自增主键2.3 基于Redis生成全局id策略2.4…

算法 —— 雪花算法

文章目录 算法 —— 雪花算法简介实现原理结构图 算法 —— 雪花算法 简介 雪花算法是由 Twitter 公布的分布式主键生成算法,它能够保证不同进程主键的不重复性,以及相同进程主键的有序性。 实现原理 在同一个进程中,它首先是通过时间位保…

java雪花算法实现

基于雪花算法(Snowflake)模式雪花算法(Snowflake)是twitter公司内部分布式项目采用的ID生成算法,开源后广受国内大厂的好评,在该算法影响下各大公司相继开发出各具特色的分布式生成器。 Snowflake生成的是L…

雪花算法的实现原理

一位工作4年的小伙伴,去某东面试时被问到这样一道题,说请你简述一下雪花算法的实现原理。屏幕前的小伙伴,如果你遇到这个问题,你会怎么回答? 今天,我给大家分享一下我的理解。 1、什么是雪花算法 雪花算…

Python 实现雪花算法

Python 实现雪花算法 雪花算法:雪花算法是一种分布式全局唯一ID,一般不需要过多的深入了解,一般个人项目用不到分布式之类的大型架构,另一方面,则是因为,就算用到市面上很多 ID 生成器帮我们完成了这项工作…

雪花算法简介以及代码实现

文章目录 雪花算法分布式ID分布式ID需要满足的要求全局唯一:高性能:高可用:方便易用:安全:有序递增:要求具体的业务含义:独立部署: 组成代码实现Java代码实现Go语言实现 雪花算法 简介: 雪花算法是Twitter开源的分布式ID生成算法 Github仓库地址 雪花算法主要用于分布式系统中…

雪花算法(id生成算法)

SnowFlake 雪花算法 SnowFlake 中文意思为雪花,故称为雪花算法。最早是 Twitter 公司在其内部用于分布式环境下生成唯一 ID。在2014年开源 scala 语言版本。 实现原理 雪花算法原理就是生成一个的64位比特位的 long 类型的唯一 id。 最高1位固定值0&#xff0c…

什么是雪花算法?啥原理?

1、SnowFlake核心思想 SnowFlake 算法,是 Twitter 开源的分布式 ID 生成算法。 其核心思想就是:使用一个 64 bit 的 long 型的数字作为全局唯一 ID。在分布式系统中的应用十分广泛,且 ID 引入了时间戳,基本上保持自增的&#xf…

雪花算法-java

前言: 👏作者简介:我是笑霸final,一名热爱技术的在校学生。 📝个人主页:个人主页1 || 笑霸final的主页2 📕系列专栏:计算机基础专栏 📧如果文章知识点有错误的地方&#…

数据库中雪花算法是什么?

一、为何要用雪花算法 1、问题产生的背景 现如今越来越多的公司都在用分布式、微服务,那么对应的就会针对不同的服务进行数据库拆分,然后当数据量上来的时候也会进行分表,那么随之而来的就是分表以后id的问题。 例如之前单体项目中一个表中…

snowflake算法(雪花算法)

snowflake算法(雪花算法) 1.snowflake算法介绍 Snowflake算法产生是为了满足Twitter每秒上万条消息的请求,每条消息都必须分配一条唯一的id,这些id还需要一些大致的顺序(方便客户端排序),并且在分布式系统中不同机器…

分布式ID生成算法——雪花算法

一、分布式ID ID可以唯一标识一条记录。 对于单体架构,我们可以使用自增ID来保证ID的唯一性。但是,在分布式系统中,简单的使用自增ID就会导致ID冲突。这也就引出了分布式ID问题。分布式ID也要求满足分布式系统的高性能、高可用、高并发的特点…

【SnowFlake】雪花算法(Java版本)

SnowFlake雪花算法(Java版本) 一、SnowFlake算法二、代码实现三、应用场景四、优缺点五、分布式生成ID方式 一、SnowFlake算法 雪花算法(Snowflake)是twitter公司内部分布式项目采用的ID生成算法 Snowflake生成的是Long类型的ID,一个Long类型…

雪花算法以及具体实现

一、为何要用雪花算法 1、问题产生的背景 现如今越来越多的公司都在用分布式、微服务,那么对应的就会针对不同的服务进行数据库拆分,然后当数据量上来的时候也会进行分表,那么随之而来的就是分表以后id的问题。 例如之前单体项目中一个表中的…

什么是雪花算法,详解雪花算法原理

雪花算法(SnowFlake) 雪花算法是Twitter开源的分布式ID生成算法. 主要是由64bit的long型生成的全局ID,引入了时间戳和ID保持自增的属性. 64bit分为四个部分: 第一个部分是1bit, 这不 使用,没有意义; 第二个部分是41bit, 组成时间戳; 第三个部分是10bit, 工作机器ID,里面分为…

雪花算法原理及实现

背景 分布式高并发的环境下,最常见的就是每年双十一的十二点,大量用户同时抢购同一商品,毫秒级的时间下可能生成数万个订单,此时确保生成订单ID的唯一性变得至关重要。此外,在秒杀环境下,不仅要保障ID唯一…

雪花算法的原理和实现Java

SnowFlake 算法,是 Twitter 开源的分布式 id 生成算法。其核心思想就是:使用一个 64 bit 的 long 型的数字作为全局唯一 id。在分布式系统中的应用十分广泛,且ID 引入了时间戳,基本上保持自增的,后面的代码中有详细的注…

雪花算法简介

文章目录 1、简介2、雪花算法3、算法实现4、算法优缺点5、补充 1、简介 在生成随机主键的时候,我第一个想到的就是UUID,但是UUID在MySQL中作为主键生成时,就会出现一个问题,UUID生成的是乱序的。这时候,学习MP的过程中…