InterValJoin算子
间隔流,一条流去join另一条流去过去一段时间内的数据,该算子将keyedStream与keyedStream转化为DataStream;再给定的时间边界内(默认包含边界),相当于一个窗口,按指定的key对俩个KeyedStream进行Join操作,把符合join条件的俩个event拉倒一起,然后咋么处理右用户来决定。
1、key1 == key2 && e1.timestamp +lowerBound <= e2.timestamp +upperBound
2、场景:把一定时间范围内相关的分组数据拉成一个宽表
语法规则:
leftKeyedStream
.intervalJoin(rightKeyedStream)
//时间间隔,设定下界和上界
.between(Time.minutes(-10),Time.seconds(0))
//不包含下界
.lowerBoundExclusive()
//不包含上界
.upperBoundExclusive()
//自定义ProcessJoinFunction 处理join到的元组
.process(ProcessJoinFunction)
该算子的注意事项:
1、俩条流都缓存在内部state中。leftElement到达,去获取State中rightElement响应时间范围内的数据,然后执行ProcessJoinFunciton进行Join操作;
2、时间间隔:leftElement默认和【leftElementEventTime + lowerBound,leftElementEventTime +upperBound】时间范围内的rightElement join;
3、举例:leftElementEventTime = 2019-11-16 17:30:00,lowerBound=-10minute,upperBound=0,则这条leftElement按Key和【2019-11-16 17:20:00,2019-11-16 17:30:00】时间范围内的rightElementJoin;
4、IntervalJoin目前只支持EventTime;
5、数据量比较大,可能使用RocksDBStateBackend
demo案列:
package Flink_API;import org.apache.flink.api.common.functions.JoinFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.streaming.api.functions.co.ProcessJoinFunction;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer010;
import org.apache.flink.streaming.util.serialization.KeyedDeserializationSchema;
import org.apache.flink.table.shaded.org.joda.time.DateTime;
import org.apache.flink.table.shaded.org.joda.time.format.DateTimeFormat;
import org.apache.flink.table.shaded.org.joda.time.format.DateTimeFormatter;
import org.apache.flink.util.Collector;import java.io.Serializable;
import java.util.Properties;public class TestInterViewJoin {public static void main(String[] args) throws Exception {//创建运行环境StreamExecutionEnvironment env=StreamExecutionEnvironment.getExecutionEnvironment();//Flink是以数据自带的时间戳字段为准env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);//设置并行度env.setParallelism(1);//1、获取第一个流,获取用户的浏览信息DataStream<UserBrowseLog> browseStream = getUserBrowseDataStream(env);//2、获取用户的点击信息DataStream<UserClickLog> clickStream = getUserClickLogDataStream(env);//打印结果browseStream.print();clickStream.print();//核心:双流进行IntervalJoin操作:每个用户的点击信息Join这个用户最近10分钟内的浏览信息//browseStream(左流)关联clickStream(右流)KeyedStream<UserClickLog,String> userClickLogStringKeyedStream = clickStream.keyBy(new KeySelector<UserClickLog,String>(){@Overridepublic String getKey(UserClickLog userClickLog) throws Exception {return userClickLog.userID;}});KeyedStream<UserBrowseLog,String> userBrowseLogStringKeyedStream1=browseStream.keyBy(new KeySelector<UserBrowseLog,String>(){@Overridepublic String getKey(UserBrowseLog userBrowseLog) throws Exception {return userBrowseLog.userID;}});//每个用户的点击Join这个用户最近的10分钟内的浏览DataStream<String> processData = userClickLogStringKeyedStream.intervalJoin(userBrowseLogStringKeyedStream1).between(Time.minutes(-10),Time.seconds(0))//下界:10分钟,上界:当前EventTime时刻(左流去右流10分钟之前去找数据).process(new ProcessJoinFunction<UserClickLog, UserBrowseLog, String>() {//leftElement到达,去获取State中rightElement响应范围内的数据,然后执行ProcessJoinFunction进行Join操作:@Overridepublic void processElement(UserClickLog left, UserBrowseLog right, Context context, Collector<String> collector) throws Exception {collector.collect(left+"<IntevalJoin>"+right);}});processData.print();//程序的入口类env.execute("TestInterViewJoin");}private static DataStream<UserClickLog> getUserClickLogDataStream(StreamExecutionEnvironment env) {Properties consumerProperties = new Properties();consumerProperties.setProperty("bootstrap.severs","page01:9002");consumerProperties.setProperty("grop.id","browsegroup");DataStreamSource<String> dataStreamSource=env.addSource(new FlinkKafkaConsumer010<String>("browse_topic1", (KeyedDeserializationSchema<String>) new SimpleStringSchema(),consumerProperties));DataStream<UserClickLog> processData=dataStreamSource.process(new ProcessFunction<String, UserClickLog>() {@Overridepublic void processElement(String s, Context context, Collector<UserClickLog> collector) throws Exception {try{UserClickLog browseLog = com.alibaba.fastjson.JSON.parseObject(s, UserClickLog.class);if(browseLog !=null){collector.collect(browseLog);}}catch(Exception e){System.out.print("解析Json——UserBrowseLog异常:"+e.getMessage());}}});//设置watermarkreturn processData.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<UserClickLog>(Time.seconds(0)){@Overridepublic long extractTimestamp(UserClickLog userBrowseLog) {DateTimeFormatter dateTimeFormatter= DateTimeFormat.forPattern("yyyy-MM-dd HH:mm:ss");DateTime dateTime=DateTime.parse(userBrowseLog.getEventTime(),dateTimeFormatter);//用数字表示时间戳,单位是ms,13位return dateTime.getMillis();}});}private static DataStream<UserBrowseLog> getUserBrowseDataStream(StreamExecutionEnvironment env) {Properties consumerProperties = new Properties();consumerProperties.setProperty("bootstrap.severs","page01:9001");consumerProperties.setProperty("grop.id","browsegroup");DataStreamSource<String> dataStreamSource=env.addSource(new FlinkKafkaConsumer010<String>("browse_topic", (KeyedDeserializationSchema<String>) new SimpleStringSchema(),consumerProperties));DataStream<UserBrowseLog> processData=dataStreamSource.process(new ProcessFunction<String, UserBrowseLog>() {@Overridepublic void processElement(String s, Context context, Collector<UserBrowseLog> collector) throws Exception {try{UserBrowseLog browseLog = com.alibaba.fastjson.JSON.parseObject(s, UserBrowseLog.class);if(browseLog !=null){collector.collect(browseLog);}}catch(Exception e){System.out.print("解析Json——UserBrowseLog异常:"+e.getMessage());}}});//设置watermarkreturn processData.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<UserBrowseLog>(Time.seconds(0)) {@Overridepublic long extractTimestamp(UserBrowseLog userBrowseLog) {DateTimeFormatter dateTimeFormatter= DateTimeFormat.forPattern("yyyy-MM-dd HH:mm:ss");DateTime dateTime=DateTime.parse(userBrowseLog.getEventTime(),dateTimeFormatter);//用数字表示时间戳,单位是ms,13位return dateTime.getMillis();}});}//浏览类public static class UserBrowseLog implements Serializable {private String userID;private String eventTime;private String eventType;private String productID;private Integer productPrice;public String getUserID() {return userID;}public void setUserID(String userID) {this.userID = userID;}public String getEventTime() {return eventTime;}public void setEventTime(String eventTime) {this.eventTime = eventTime;}public String getEventType() {return eventType;}public void setEventType(String eventType) {this.eventType = eventType;}public String getProductID() {return productID;}public void setProductID(String productID) {this.productID = productID;}public Integer getProductPrice() {return productPrice;}public void setProductPrice(Integer productPrice) {this.productPrice = productPrice;}@Overridepublic String toString() {return "UserBrowseLog{" +"userID='" + userID + '\'' +", eventTime='" + eventTime + '\'' +", eventType='" + eventType + '\'' +", productID='" + productID + '\'' +", productPrice=" + productPrice +'}';}}//点击类public static class UserClickLog implements Serializable{private String userID;private String eventTime;private String eventType;private String pageID;public String getUserID() {return userID;}public void setUserID(String userID) {this.userID = userID;}public String getEventTime() {return eventTime;}public void setEventTime(String eventTime) {this.eventTime = eventTime;}public String getEventType() {return eventType;}public void setEventType(String eventType) {this.eventType = eventType;}public String getPageID() {return pageID;}public void setPageID(String pageID) {this.pageID = pageID;}@Overridepublic String toString() {return "UserClickLog{" +"userID='" + userID + '\'' +", eventTime='" + eventTime + '\'' +", eventType='" + eventType + '\'' +", pageID='" + pageID + '\'' +'}';}}}