Attention原理

article/2025/10/14 22:34:38

文章目录

  • Attention原理
  • HAN原理
  • 利用Attention模型进行文本分类
  • 参考资料

Attention原理

转载一个Hierarchical Attention神经网络的实现
转载 图解Transformer
转载 Attention原理和源码解析
论文链接 Attention is All You Need

HAN原理

论文链接Hierarchical Attention Network for Document Classification

HAN模型就是分层次的利用注意力机制来构建文本向量表示的方法。

文本由句子构成,句子由词构成,HAN模型对应这个结构分层的来构建文本向量表达;

文本中不同句子对文本的主旨影响程度不同,一个句子中不同的词语对句子主旨的影响程度也不同,因此HAN在词语层面和句子层面分别添加了注意力机制;

分层的注意力机制还有一个好处,可以直观的看出用这个模型构建文本表示时各个句子和单词的重要程度,增强了可解释性;

模型结构:
在这里插入图片描述
论文里面使用双向GRU来构建句子表示和文本表示,以句子为例,得到循环神经网络中每个单元的输出后利用注意力机制整合得到句子向量表示(不使用attention时,一般会使用MAX或AVE),过程如下:
在这里插入图片描述
按照文中说法,先经过一层MLP得到隐层表示,然后与word level context vector " u w u_w uw"做点积,各词语得到的结果再经过softmax函数后的结果就是各自的重要程度,即 α \alpha αit,最后加权和得到句子表示 s i s_i si 。文本向量的构建与此一致,之后经过全连接层和softmax分类。

利用Attention模型进行文本分类

转载 mt_attention_birnn

参考资料

使用CNN,RNN,HAN进行文本分类的对比报告
HAN
一个Hierarchical Attention神经网络的实现


http://chatgpt.dhexx.cn/article/RSa6x6Lv.shtml

相关文章

Transformer详解(二):Attention机制

1.Encoder-Decoder中的attention机制 上一篇文章最后,在Encoder-Decoder框架中,输入数据的全部信息被保存在了C。而这个C很容易受到输入句子长度的影响。当句子过长时,C就有可能存不下这些信息,导致模型后续的精度下降。Attentio…

attention模型

以机器翻译为例说明: 普通的RNN机器翻译模型: 次结构弱点在于当target句子太长时,前面encoder学习到的embedding vector(红边框)可能会被后面的decoder遗忘。因此改进版本如下: 这样,每次在输入target的word的时候,除了可以看到…

【深度学习】Self-Attention 原理与代码实现

1.Self-Attention 结构 在计算的时候需要用到矩阵Q(查询),K(键值),V(值)。在实际中,Self-Attention 接收的是输入(单词的表示向量x组成的矩阵X) 或者上一个 Encoder block 的输出。而Q,K,V正是通过 Self-Attention 的输入进行线性变换得到的。 2. Q, K, V 的计算 S…

Self -Attention、Multi-Head Attention、Cross-Attention

Self -Attention Transformer结构图 上图是论文中 Transformer 的内部结构图,左侧为 Encoder block,右侧为 Decoder block。红色圈中的部分为 Multi-Head Attention,是由多个 Self-Attention组成的,可以看到 Encoder block 包含一…

Attention Rollout

问题陈述 从图1a中的原始attention可以看出,只有在最开始的几层,不同位置的attention模式有一些区别,但是更高层中的attention权重更加一致。这表示随着模型层数的增加,嵌入的内容变得更加情境化,可能都带有类似的信息…

Attention可视化

Attention matrix: https://github.com/rockingdingo/deepnlp/blob/r0.1.6/deepnlp/textsum/eval.py plot_attention(data, X_labelNone, Y_labelNone)函数 #!/usr/bin/python # -*- coding:utf-8 -*-""" Evaluation Method for summarization tas…

Attention机制

文章目录 一、Attention机制是什么?二、推荐论文与链接三、self-attention 一、Attention机制是什么? Attention机制最早在视觉领域提出,九几年就被提出来的思想,真正火起来应该算是2014年Google Mind发表了《Recurrent Models o…

Attention详解

1.背景知识 Seq2Seq模型:使用两个RNN,一个作为编码器,一个作为解码器。 编码器:将输入数据编码成一个特征向量。 解码器:将特征向量解码成预测结果。 缺点:只将编码器的最后一个节点的结果进行了输出&am…

浅析NLP中的Attention技术

Attention(注意力机制)在NLP、图像领域被广泛采用,其显而易见的优点包括: (1)从context中捕捉关键信息; (2)良好的可视性和可解释性。 我们常用QKV模型来理解Attention&…

Attention 机制

文章目录 Attention 的本质是什么Attention 的3大优点Attention 的原理Attention 的 N 种类型 转载来源:https://easyai.tech/ai-definition/attention/ Attention 正在被越来越广泛的得到应用。尤其是 BERT 火爆了之后。 Attention 到底有什么特别之处&#xff1f…

详解Transformer中Self-Attention以及Multi-Head Attention

原文名称:Attention Is All You Need 原文链接:https://arxiv.org/abs/1706.03762 如果不想看文章的可以看下我在b站上录的视频:https://b23.tv/gucpvt 最近Transformer在CV领域很火,Transformer是2017年Google在Computation an…

Attention 一综述

近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中。随着注意力机制的深入研究,各式各样的attention被研究者们提出,如单个、多个、交互式等等。去年6月,google机器翻译…

从Attention到Bert——1 Attention解读

下一篇从Attention到Bert——2 transformer解读 文章目录 1 Attention的发展历史2015-2017年 2 Attention的原理3 Multi-Head Attention4 Self-Attention为什么需要self-attention什么是self-attention 5 Position Embedding 最早,attention诞生于CV领域&#xff0…

Attention UNet

Attention UNet论文解析 - 知乎Attention UNet论文地址: https://arxiv.org/pdf/1804.03999.pdf 代码地址: https://github.com/ozan-oktay/Attention-Gated-NetworksAttention UNet在UNet中引入注意力机制,在对编码器每个分辨率上的特征与解…

attention

文章目录 Attention基本的Attention原理参考 Hierarchical Attention原理实践参考 Self Attentionother Attention Attention Attention是一种机制,可以应用到许多不同的模型中,像CNN、RNN、seq2seq等。Attention通过权重给模型赋予了区分辨别的能力&am…

史上最小白之Attention详解

1.前言 在自然语言处理领域,近几年最火的是什么?是BERT!谷歌团队2018提出的用于生成词向量的BERT算法在NLP的11项任务中取得了非常出色的效果,堪称2018年深度学习领域最振奋人心的消息。而BERT算法又是基于Transformer&#xff0…

一文看懂 Attention(本质原理+3大优点+5大类型)

Attention 正在被越来越广泛的得到应用。尤其是 BERT 火爆了之后。 Attention 到底有什么特别之处?他的原理和本质是什么?Attention都有哪些类型?本文将详细讲解Attention的方方面面。 Attention 的本质是什么 Attention(注意力&a…

史上最直白之Attention详解(原理+代码)

目录 为什么要了解Attention机制Attention 的直观理解图解深度学习中的Attention机制总结 为什么要了解Attention机制 在自然语言处理领域,近几年最火的是什么?是BERT!谷歌团队2018提出的用于生成词向量的BERT算法在NLP的11项任务中取得了非常…

关于Attention的超详细讲解

文章目录 一、动物的视觉注意力二、快速理解Attention思想三、从Encoder-Decoder框架中理解为什么要有Attention机制四、Attention思想步骤五、Self-Attention5.1 Self-Attention的计算步骤5.2 根据代码进一步理解Q、K、V5.3 再来一个例子理解 六、缩放点积中为什么要除以根号d…