#Reading Paper# 【序列推荐】SIGIR 2022 Decoupled Side Information Fusion for Sequential Recommendation

article/2025/8/6 8:48:13

#论文题目:【序列推荐】Decoupled Side Information Fusion for Sequential Recommendation(DIF-SR:用于序列推荐的辅助信息解耦)
#论文地址:https://arxiv.org/pdf/2204.11046.pdf
#论文源码开源地址:https://github.com/AIM-SE/DIF-SR
#论文所属会议:SIGIR 2022
#论文所属单位:香港科技大学

在这里插入图片描述

一、导读

通常的融合辅助信息的序列推荐方法都是将序列中交互对应的辅助信息(如商品的品牌,类别,用户打分等)和交互的商品ID一起融合后,再经过注意力机制进行相关性挖掘。本文作者发现提前融合会影响注意力层的表征能力,因此,作者将注意力机制放在融合之前,然后通过将不同属性的注意力权重进行融合(add,concat,gating),然后再对embedding进行加权。 得到序列中各个交互的embedding后,采用最后一次交互的商品embedding和候选商品embedding求用户交互分数。并且在训练阶段约束交互中商品embedding包含辅助信息,具体可见损失函数部分。

二、模型框架

在这里插入图片描述
可以看出,模型分为三部分:编码模块、解耦侧信息融合模块、预测模块。

2.1 问题定义

I I I U U U分别表示商品和用户集合。用户 u u u的历史序列表示为 S S Su={ v v v1, v v v2, …, v v vn}, v v vi表示第 i i i个交互的商品,辅助信息包括与商品相关的信息(例如,品牌、类别)和与行为相关的信息(例如,位置、评分)。假设有p种辅助信息,每个交互可以表示为: v v vi={ I I Ii, f f fi(1), …, f f fp(p}, I I Ii表示第i次交互的商品ID, f f f为辅助信息。给定交互序列,预测用户最后可能交互的商品。

三、模型详解

3.1 编码模块

对于用户 u u u的历史序列 S S Su={ v v v1, v v v2, …, v v vn},分别输入到不同的编码层进行编码最终得到item编码 E E EID和辅助编码 E E Ef1, …, E E Efp
在这里插入图片描述

3.2 解耦边缘信息融合模块

如图2所示,解耦辅助信息融合模块包含顺序组合的DIF注意层和前馈层的若干堆叠块。块结构与SASRec相同,只是我们用多头DIF注意机制代替了原来的多头自我注意。每个DIF块涉及两种类型的输入,即当前item向量表征和辅助信息表征,然后输出更新的项目表征。
让Ri(ID)表示第i个块的item表示,则可以表示为:
在这里插入图片描述
DIF是论文提出的边缘信息的融合模块,FFN是前馈网络编码层,LN是层标准化操作。
下述三种方法的自注意力模块概述,可以看到,本文提出的DIF注意力模块在计算注意力之前,分别对每个子模块进行注意力分解(与Transformer中方法一致,都是先得到QKV矩阵),之后再进行向量融合。
在下图中的 F F F函数中,文中直接说参考NOVA方法,笔者在这进行补充,方便大家理解。这里的F函数可以采用相加(add),拼接(concat)或者加权(gating)
在这里插入图片描述
在这里插入图片描述
最后,所有多头注意力的输出被连接并送到前馈神经网络中进行计算。

3.3 AAP预测模块

在上述步骤中,我们借助辅助信息得到了序列信息编码的最终表征 R R RL(ID),采用 R R RL(ID)的最后一个元素 R R RL(ID) [n]来估计用户与每个商品进行交互的概率。
在这里插入图片描述

在训练期间,对属性(位置信息除外)使用辅助属性预测器(AAP),以进一步激活辅助信息和商品表征之间的交互。与先前使用单独的属性embedding进行预测或仅使用属性进行预训练的解决方案不同,本文将多个预测器直接应用于最终表征,以强制商品表征包含有用的辅助信息。(换句话说,不是每个商品都有自己的各种信息么,各种信息在上文也进行了编码表示,此步骤的目的是将各种信息也计算一个损失函数,来强行进行修正)
在这里插入图片描述
最后采用交叉熵损失函数进行优化
在这里插入图片描述

四、数据集

在这里插入图片描述

五、结果

在这里插入图片描述


http://chatgpt.dhexx.cn/article/HdHIHJeJ.shtml

相关文章

yolox Head-Decoupled head源码解读

目录 前言 yolox网络结构 yolox head网络结构 head组件及对应源码 解码 前言 yolox backbone部分介绍 yolox neck部分介绍 yolox:https://github.com/Megvii-BaseDetection/YOLOX yolox详细解读可参考:https://jishuin.proginn.com/p/763bfbd628ce yolox网络…

Decoupled Knowledge Distillation——目标分布与非目标分布相解耦

通过传统知识蒸馏的解耦分析,DKD(Decoupled Knowledge Distillation)重新审视了暗知识的本质,并通过蒸馏损失函数的改进、获得DKD loss,显著改善了任务相关知识迁移的效果: Paper地址:https://a…

【GCN-CTR】DC-GNN: Decoupled GNN for Improving and Accelerating Large-Scale E-commerce Retrieval WWW22

《DC-GNN: Decoupled Graph Neural Networks for Improving and Accelerating Large-Scale E-commerce Retrieval》(WWW’22) 在工业场景中,数百亿节点和数千亿的边直接端到端的GNN-based CTR模型开销太大,文章把整个GNN框架解耦成三阶段:预…

(2019.01, iclr) Decoupled Weight Decay Regularization

code: https://github.com/loshchil/AdamW-and-SGDW 除了纯SGD, L2 ! weight_decay 背景知识: sgd with momentum和adam,详见《深度学习》: L2 regulization and weight decay: https://benihime91.github.io/blog/machinelearning/deeplearning/python3…

Decoupled Novel Object Captioner

Decoupled Novel Object Captioner AbstractIntroductionMethodsPreliminariesZero-Shot Novel Object Captioning.Sequence Model with the PlaceholderKey-Value Object MemoryFramework OverviewTraining Reference Reference[原文]: Joselynzhao.top & 夏木青 | Decoup…

Video Anomaly Detection by Solving Decoupled Spatio-Temp

Video Anomaly Detection by Solving Decoupled Spatio-Temp 什么是SSL? Self-Supervised Learning,又称为自监督学习什么是多标签分类问题: 一个数据有多个标签pretext 任务: 简单的来说,通过另一个任务简介完成主任务 比如,要训…

魔改YOLOv5/YOLOv7高阶版——改进之结合解耦头Decoupled_Detect

💖💖>>>加勒比海带,QQ2479200884<<<💖💖 🍀🍀>>>【YOLO魔法搭配&论文投稿咨询】<<<🍀 ✨✨>>>学习交流 | 温澜潮生 | 合作共赢 | 共同进步<<<✨✨

Distilling Object Detectors via Decoupled Features

Abstract 相比于图像分类而言&#xff0c;目标检测器更加复杂&#xff0c;具有多个损失函数。而目前的的检测中&#xff0c;其主要将注意力集中在对象的区域中&#xff0c;但本文指出&#xff0c;从背景中提取的特征信息对于学生模型的学习也是必不可少的。且由于目标区域和背…

Decoupled Attention Network for Text Recognition

摘要&#xff1a; 最流行的文字检测的方法是注意力机制&#xff0c;但是大多数的注意力机制方法由于循环的对齐操作会导致严重的对齐问题。因为对齐操作依赖于历史解码信息。 本文提出的DAN将对齐操作与历史解码信息解耦。 原理&#xff1a; Connectionist temporal classifi…

涨点技巧:Detect系列---Yolov5/Yolov7加入解耦头Decoupled_Detect,涨点明显

目录 1. Decoupled Head介绍 2.Yolov5加入Decoupled_Detect 2.1 DecoupledHead加入common.py中&#xff1a; 2.2 Decoupled_Detect加入yolo.py中&#xff1a; 2.3修改yolov5s_decoupled.yaml 3.数据集下验证性能 &#x1f3c6; &#x1f3c6;&#x1f3c6;&#x1f3c6;&…

Decoupled Contrastive Learning 论文解读和感想

本文首先提出了当前对比学习的三大痛点&#xff1a; 1、当前的sota方法结构都过于复杂 2、对比学习要想取得效果&#xff0c;必须要用大batch 3、超参敏感(个人认为这里说的超参是指数据增强方式) 然后本文以SimCLR为例&#xff0c;通过对对比损失的梯度进行分析&#xff0c;发…

DECOUPLED WEIGHT DECAY REGULARIZATION

引言 Adam作为一个常用的深度学习优化方法&#xff0c;提出来的时候论文里的数据表现都非常好&#xff0c;但实际在使用中发现了不少问题&#xff0c;在许多数据集上表现都不如SGDM这类方法。 后续有许多工作针对Adam做了研究&#xff0c;之前整理过关于优化算法的发展历程&am…

Decoupled Dynamic Filter Networks

转载自:https://www.cnblogs.com/liuyangcode/p/14755924.html 对depth-wise的改进&#xff0c;将卷积核的参数改为根据输入变化的方式 Introduction 卷积缺点在于&#xff1a;内容不变&#xff0c;计算量高动态filter可以根据内容自适应&#xff0c;但是会提高计算量。depth…

Analyzing and Leveraging Decoupled L1 Caches in GPUs

introduction 我们都知道L1/L2/L3cache解决了内存墙的问题&#xff0c;但是作者分析出现有的缓存架构有着天然缺陷&#xff0c; 作者列出的many to few communication&#xff0c;也就是L1ache中大量的数据传输到L2cache中&#xff0c;可能对于L1cache的带宽使用率不是很高&a…

Decoupled network

Decoupled network https://zhuanlan.zhihu.com/p/37598903 神经网络机制存在的缺陷&#xff1f; 过拟合&#xff0c;梯度消失或者是膨胀&#xff0c;训练依靠大量样本&#xff0c;对网络初始化及其敏感记忆协迁移等等。 Decupled network是对operator的改进 现在的卷积操作…

Decoupled Knowledge Distillation论文阅读+代码解析

本文来自2022年CVPR的文章&#xff0c;论文地址点这里 一. 介绍 知识蒸馏&#xff08;KD&#xff09;的通过最小化师生预测对数之间的KL-Divergence来传递知识(下图a)。目前大部分的研究注意力都被吸引到从中间层的深层特征中提取知识。与基于logit的精馏方法相比&#xff0c…

令牌桶算法

一 算法 令牌桶算法和漏桶算法不同的是&#xff0c;有时后端能够处理一定的突发情况&#xff0c;只是为了系统稳定&#xff0c;一般不会让请求超过正常情况的60%&#xff0c;给容灾留有余地。但漏桶算法中后端处理速度是固定的&#xff0c;对于短时的突发情况&#xff0c;后端…

动态分区分配算法(1、首次适应算法 2、最佳适应算法 3、最坏适应算法 4、邻近适应算法)

文章目录 前言知识总览1、首次适应算法2、最佳适应算法3、最坏适应算法4、邻近适应算法知识回顾与重要考点 前言 此篇文章是我在B站学习时所做的笔记&#xff0c;大部分图片都是课件老师的PPT&#xff0c;方便复习用。此篇文章仅供学习参考。 提示&#xff1a;以下是本篇文章…

《算法4》读书笔记(一)

写在前面&#xff1a;配套网站algs4.cs.princeton.edu&#xff0c;可以把这个网站作为编程的时候的参考资料。这本书比较实用&#xff08;某瓣评分9.3&#xff09;&#xff0c;但没有动态规划部分&#xff0c;作为两三年没怎么碰过算法和数据结构的菜狗&#xff0c;看了《图解算…

《算法4》深入理解红黑树

红黑树是一种性能非常优秀的数据结构&#xff0c;关键在于它能保证最坏的性能也是对数的&#xff0c;主要是因为它是一种平衡的树&#xff0c;所以也叫平衡查找树。要理解红黑树&#xff0c;最好先看看我的上一篇博客《算法4》符号表以及二叉查找树&#xff0c;了解二叉查找树以…