激活函数(Relu,sigmoid,Tanh,softmax)详解

article/2025/9/27 8:31:15

目录

1 激活函数的定义

2 激活函数在深度学习中的作用

3 选取合适的激活函数对于神经网络有什么样的重要意义

4 常用激活函数

4.1 Relu 激活函数

4.2 sigmoid 激活函数

4.3 Tanh激活函数

4.4 softmax 激活函数


1 激活函数的定义

激活函数(Activation Function),就是在人工神经网络的神经元上运行的函数,负责将神经元的输入映射到输出端。

激活函数(Activation functions)对于人工神经网络模型去学习、理解非常复杂和非线性的函数来说具有十分重要的作用。它们将非线性特性引入到我们的网络中。

 

2 激活函数在深度学习中的作用

如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层节点的输入都是上层输出的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,这种情况就是最原始的感知机(Perceptron)了,那么网络的逼近能力就相当有限。正因为上面的原因,我们决定引入非线性函数作为激励函数,这样深层神经网络表达能力就更加强大(不再是输入的线性组合,而是几乎可以逼近任意函数)。

激活函数有非线性,可微性,单调性,输出值的范围等性质。

3 选取合适的激活函数对于神经网络有什么样的重要意义

 层数比较多的神经网络模型在训练的时候会出现梯度消失(gradient vanishing problem)和梯度爆炸(gradient exploding problem)问题。梯度消失问题和梯度爆炸问题一般会随着网络层数的增加变得越来越明显。梯度消失会使网络训练不动,甚至使模型的学习停滞不前。梯度爆炸一般出现在深层网络和权值初始化值太大的情况下,梯度爆炸会引起网络不稳定,最好的结果是无法从训练数据中学习,而最坏的结果是出现无法再更新的NaN权重值。

        例如,一个网络含有三个隐藏层,梯度消失问题发生时,靠近输出层的hidden layer 3的权值更新相对正常,但是靠近输入层的hidden layer1的权值更新会变得很慢,导致靠近输入层的隐藏层权值几乎不变,仍接近于初始化的权值。这就导致hidden layer 1 相当于只是一个映射层,对所有的输入做了一个函数映射,这时此深度神经网络的学习就等价于只有后几层的隐藏层网络在学习。梯度爆炸的情况是:当初始的权值过大,靠近输入层的hidden layer 1的权值变化比靠近输出层的hidden layer 3的权值变化更快,就会引起梯度爆炸的问题。

        梯度消失和梯度爆炸问题都是因为网络太深,网络权值更新不稳定造成的,本质上是因为梯度反向传播中的连乘效应。对于更普遍的梯度消失问题,可以考虑一下三种方案解决:

1.    用ReLU等替代sigmoid函数。

2.    用Batch Normalization。

3.    LSTM的结构设计也可以改善RNN中的梯度消失问题。

4 常用激活函数

早期研究神经网络主要采用sigmoid函数或者tanh函数,输出有界,很容易充当下一层的输入。
近些年Relu函数及其改进型(如Leaky-ReLU、P-ReLU、R-ReLU等)在多层神经网络中应用比较多。下面我们来总结下这些激活函数:

4.1 Relu 激活函数

Relu函数表达式:

在这里插入图片描述

 

函数,及其导数图像:

自定义代码:

函数表达式:f(x) = 1/(1+e^-x)
函数特点:
优点:1.输出[0,1]之间;2.连续函数,方便求导。
缺点:1.容易产生梯度消失;2.输出不是以零为中心;3.大量运算时相当耗时(由于是幂函数)。函数定义:
def sigmoid(x):y = 1/(1+np.exp(-x))return y

pytorch代码:

# ReLU函数在torch中如何实现
import torch
a = torch.linspace(-1,1,10)
b = torch.relu(a)
print(a)
print(b)

4.2 sigmoid 激活函数

函数表达式:

\small f(x)=\frac{1}{1+e^{-x}}

函数图像:

在这里插入图片描述

 函数导数图像:

 

自定义代码:

函数表达式:f(x) = 1/(1+e^-x)
函数特点:
优点:1.输出[0,1]之间;2.连续函数,方便求导。
缺点:1.容易产生梯度消失;2.输出不是以零为中心;3.大量运算时相当耗时(由于是幂函数)。函数定义:
def sigmoid(x):y = 1/(1+np.exp(-x))return y

pytorch代码:

# sigmoid函数在torch中如何实现import torch
# a从-100到100中任取10个数
a = torch.linspace(-100,100,10)
print(a)
# 或者F.sigmoid也可以 F是从from torch.nn import functional as F
b = torch.sigmoid(a)
print(b)

4.3 Tanh激活函数

函数表达式:

在这里插入图片描述

函数图像:

在这里插入图片描述

函数导数图像:

 

 自定义代码:

函数表达式:f(x) = (e^x-e^-x)/(e^x+e-x)
函数特点:
优点:1.输出[-1,1]之间;2.连续函数,方便求导;3.输出以零为中心。
缺点:1.容易产生梯度消失; 2.大量数据运算时相当耗时(由于是幂函数)。函数定义:
def tanh(x):y = (np.exp(x) - np.exp(-x))/(np.exp(x) + np.exp(-x))return y

pytorch代码:

# tanh函数在torch中如何实现
import torch
a = torch.linspace(-10,10,10)
b = torch.tanh(a)
print(a)
print(b)

4.4 softmax 激活函数

函数表达式:

函数图像:

 函数导数图像:

自定义代码:

def softmax(x):if x.ndim == 2:x = x.Tx = x - np.max(x, axis=0)y = np.exp(x) / np.sum(np.exp(x), axis=0)return y.Tx = x - np.max(x) # 溢出操作return np.exp(x) / np.sum(np.exp(x))


http://chatgpt.dhexx.cn/article/ECKLfMNs.shtml

相关文章

激活函数(Activation Function)

目录 1 激活函数的概念和作用 1.1 激活函数的概念 1.2 激活函数的作用 1.3 通俗的理解一下激活函数(图文结合) 1.3.1 无激活函数的神经网络 1.3.2 带激活函数的神经网络 2 神经网络梯度消失与梯度爆炸 2.1 简介梯度消失与梯度爆炸 2.2 梯度不稳定问题 2.3 产生梯度消…

常用的激活函数合集(详细版)

目录 一、定义以及作用 二、常用激活函数解析 1、Sigmoid函数 1.1 公式 1.2 对应的图像 1.3 优点与不足之处 1.4 对应pytorch的代码 2、Tanh函数 2.1 公式 2.2 对应的图像 2.3 优点与不足之处 2.4 对应pytorch的代码 3、ReLU 3.1 公式 3.2 对应的图像 3.3 优点与不…

优化算法——FTRL

ctr预测中,单个样本由向量x表示,w是模型参数,预测样本x被点击的概率psigmoid(w * x),sigmoid(x) 1/(1exp(x))。样本label为{0, 1}表示是否被点击。模型损失函数为交叉熵损失: L -ylog - (1-y)log(1-p),梯…

【深度学习】优化算法-Ftrl

脑图 代码实现 DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSEVersion 2, December 2004Copyright (C) 2004 Sam Hocevar <samhocevar.net>Everyone is permitted to copy and distribute verbatim or modified copies of this license document, and changing it is all…

谷歌13年提出来的类似于lr的算法 - ftrl论文翻译(七)

论文链接&#xff1a;https://static.googleusercontent.com/media/research.google.com/zh-CN//pubs/archive/41159.pdf 概要 预测广告点击率&#xff08;CTR&#xff09;是一个巨大的规模学习问题&#xff0c;是在线广告业数十亿美元的核心问题。 我们从最近的实验中选择出…

FTRL 算法

本文会尝试总结FTRL的发展由来&#xff0c;总结从LR -> SGD -> TG -> FOBOS -> RDA -> FTRL 的发展历程。本文的主要目录如下&#xff1a; 一、 反思魏则西事件。 二、 LR模型 三、 SGD算法 四、 TG算法 五、 FOBOS算法 六、 RDA算法 七、 FTRL算法 注&…

排序模型进阶-FMFTRL

日萌社 人工智能AI&#xff1a;Keras PyTorch MXNet TensorFlow PaddlePaddle 深度学习实战&#xff08;不定时更新&#xff09; 5.8 排序模型进阶-FM&FTRL 学习目标 目标 无应用 无 5.8.1 问题 在实际项目的时候&#xff0c;经常会遇到训练数据非常大导致一些算法实际…

以我视角深入理解FTRL模型原理

以我视角深入理解FTRL模型原理 FTRL算法是吸取了FOBOS算法和RDA算法的优点而衍生而来的算法。 1.FOBOS算法 小结&#xff1a; 2. RDA算法 RDA也叫正则对偶平均算法&#xff0c;特征权重更新如下&#xff1a; 小结&#xff1a; 3.FTRL算法原理 从loss function的形式来看&am…

FTRL实战之LR+FTRL(代码采用的稠密数据)

理解要点&#xff1a;主要是梯度更新的方法使用了FTRL。即更改了梯度的update函数。 相关参考&#xff1a;https://github.com/wan501278191/OnlineLearning_BasicAlgorithm/blob/master/FTRL.py FTRL&#xff08;Follow The Regularized Leader&#xff09;是一种优化…

DL基本知识(七)FTRL优化器

契机 最近工作方向为缩减模型规模&#xff0c;切入点为L1正则化&#xff0c;选择该切入点的理由如下&#xff0c; 众所周知&#xff0c;L1正则化能令权重矩阵更稀疏。在推荐系统中特征多为embedding&#xff0c;权重矩阵稀疏意味着一些embedding_weight为0&#xff0c;模型部…

FTRL算法详解

一、算法原理 二、算法逻辑 三、个人理解 从loss function的形式来看&#xff1a;FTRL就是将RDA-L1的“梯度累加”思想应用在FOBOS-L1上&#xff0c;并施加一个L2正则项。【PS&#xff1a;paper上是没有加L2正则项的】这样达到的效果是&#xff1a; 累积加和限定了新的迭代结果…

FTRL算法理解

本文主要是对FTRL算法来源、原理、应用的总结和自己的思考。 解决的问题 1、训练数据层面&#xff1a;数据量大、特征规模大 2、常用的LR和FM这类模型的参数学习&#xff0c;传统的学习算法是batch learning算法&#xff0c;无法有效地处理大规模的数据集&#xff0c;也无法…

ftrl 流式更新 java_深入理解FTRL

FTRL算法是吸取了FOBOS算法和RDA算法的两者优点形成的Online Learning算法。读懂这篇文章&#xff0c;你需要理解LR、SGD、L1正则。 FOBOS算法 前向后向切分(FOBOS&#xff0c;Forward Backward Splitting)是 John Duchi 和 Yoran Singer 提出的。在该算法中&#xff0c;权重的…

排序模型-FTRL

排序模型进阶-FTRL 1 问题 在实际项目的时候&#xff0c;经常会遇到训练数据非常大导致一些算法实际上不能操作的问题。比如在推荐行业中&#xff0c;因为DSP的请求数据量特别大&#xff0c;一个星期的数据往往有上百G&#xff0c;这种级别的数据在训练的时候&#xff0c;直接…

FTRL代码实现

FTRL&#xff08;Follow The Regularized Leader&#xff09;是一种优化方法&#xff0c;就如同SGD&#xff08;Stochastic Gradient Descent&#xff09;一样。这里直接给出用FTRL优化LR&#xff08;Logistic Regression&#xff09;的步骤&#xff1a; 其中ptσ(Xt⋅w)ptσ(X…

FTRL算法

概述 GBDT算法是业界比较好用筛选特征的算法&#xff0c;在线学习考虑效率和数据量&#xff0c;经常用GBDT离线筛选特征&#xff0c;输入到在线模型进行实时训练&#xff0c;如今比较好用的方法是GBDTLR&#xff0c;而FTRL是另外一种很高效的算法&#xff0c;与其类似的有OGD&…

FTRL-Proximal

Ad Click Prediction: a View from the Trenches ABSTRACT 广告点击率预测是一个大规模的学习问题&#xff0c;对数十亿美元的在线广告行业至关重要。我们从部署的CTR预测系统的设置中提供了一些案例研究和从最近的实验中提取的话题&#xff0c;包括基于FTRL-Proximal在线学习…

FTRL

一、算法原理 二、算法逻辑 三、个人理解 从loss function的形式来看:FTRL就是将RDA-L1的“梯度累加”思想应用在FOBOS-L1上,并施加一个L2正则项。【PS:paper上是没有加L2正则项的】 这样达到的效果是: 累积加和限定了新的迭代结果W**不要离“已迭代过的解”太远**; 因为…

在线学习算法FTRL基本原理

文章目录 相关介绍SGD: Stochastic Gradient DescentTG简单加入L1范数简单截断法梯度截断法 FOBOS: Forward Backward Splitting[^4]RDA: Regularized dual averaging[^5] FTRL: Follow-the-Regularized-Leader总结 相关介绍 SGD: Stochastic Gradient Descent 由于批量梯度下…

Lr

二、 逻辑回归 言归正传&#xff0c;因为广告大部分是按照CPC计费的&#xff0c;而我们手里的流量是固定的&#xff0c;因此对每条广告请求我们就需要保证这条广告的展示收益更大。而广告收益是可以根据点击率、广告计费价格、广告质量度均衡决定的&#xff0c;所以我们就需要评…