二叉树--红黑树

article/2025/10/1 4:05:35

红黑树

定义

红黑树,顾名思义,就是树的节点只有红色黑色两种状态,通过这两种状态的标识和规定颜色的使用,来使树达到相对平衡。为什么说相对平衡?因为在红黑树中,所有的条件限制只能保证,所有路径中最长的路径不能使最短路径的2倍。只能保证相对平衡。

有人讨论:红黑树是不是一棵平衡二叉树?因为红黑树不满足严格的平衡二叉树的定义,从严格意义上来讲,红黑树并不是平衡二叉树;但是,红黑树在建立的时候,也是有平衡调整的过程,是相对平衡的,所以它也不是严格的不平衡的,所以老祖宗的语言的艺术就有用了,应该说,红黑树是一棵自平衡二叉树(不要说它是平衡二叉树),只能保证相对平衡。


性质

(1)每个节点或者是黑色,或者是红色。
(2)根节点是黑色。
(3)每个叶子节点(NIL)是黑色。 [注意:这里叶子节点,是指为空(NIL或NULL)的叶子节点!]
(4)如果一个节点是红色的,则它的子节点必须是黑色的。
(5)从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点。

注意:
(01) 特性(3)中的叶子节点,是只为空(NIL或null)的节点。
(02) 特性(5),确保没有一条路径会比其他路径长出俩倍。因而,红黑树是相对是接近平衡的二叉树。

这里写图片描述


应用

红黑树广泛的应用在各种程序库中,主要是用它来存储有序的数据,它的时间复杂度是O(lgn),效率非常之高。在linux内核的进行调度上面,C++中stl中的很多容器多采用了红黑树的算法,Java中的TreeMap也是采用了红黑树的算法来实现排序。


基本操作

旋转

红黑树的旋转相比二叉平衡树,要简单一点,因为其只有两种旋转操作,即左旋和右旋。

左旋

这里写图片描述

是不是感觉上面的左旋很熟悉,其实就是平衡二叉树中的右右的这种情况,用 x 右节点代替 x,其右节点的右子树保持不变,并且将其右节点的左子树赋给 x 的右子树,完毕。

右旋

这里写图片描述

与左旋完全相反,用 y 左节点代替 y,其左节点的左子树保持不变,并且将其左节点的右子树赋给 y 的左子树,完毕。

如何区分右旋 左旋
这是一个问题,但是仔细观察上面,就是左旋就是让旋转的节点变成左子树,右旋就是让旋转的节点变成右子树,简单的总结一句话,

左旋–>提右节点,变左子树
右旋–>提左节点,变右子树

添加

将一个节点插入到红黑树中,首先,将红黑树当作一颗二叉查找树,将节点插入;然后,将节点着色为红色;最后,通过旋转和重新着色等方法来调整该树,使之重新成为一颗红黑树。详细描述如下:

第一步: 将红黑树当作一颗二叉查找树,将节点插入。

红黑树本身就是一颗二叉查找树,将节点插入后,该树仍然是一颗二叉查找树。也就意味着,树的键值仍然是有序的。此外,无论是左旋还是右旋,若旋转之前这棵树是二叉查找树,旋转之后它一定还是二叉查找树。这也就意味着,任何的旋转和重新着色操作,都不会改变它仍然是一颗二叉查找树的事实。

第二步:将插入的节点着色为”红色”。

为什么着色成红色,而不是黑色呢?将插入的节点着色为红色,不会违背”特性(5)”!少违背一条特性,就意味着我们需要处理的情况越少。接下来,就要努力的让这棵树满足其它性质即可;满足了的话,它就又是一颗红黑树了。

第三步: 通过一系列的旋转或着色等操作,使之重新成为一颗红黑树。

第二步中,将插入节点着色为”红色”之后,不会违背”特性(5)”。那它到底会违背哪些特性呢?
对于”特性(1)”,显然不会违背了。因为我们已经将它涂成红色了。
对于”特性(2)”,显然也不会违背。在第一步中,我们是将红黑树当作二叉查找树,然后执行的插入操作。而根据二叉查找数的特点,插入操作不会改变根节点。所以,根节点仍然是黑色。
对于”特性(3)”,显然不会违背了。这里的叶子节点是指的空叶子节点,插入非空节点并不会对它们造成影响。
* 对于”特性(4)”*,是有可能违背的!
那接下来,想办法使之”满足特性(4)”,就可以将树重新构造成红黑树了。

参考下面的伪码:

RB-INSERT(T, z)  y ← nil[T]                        // 新建节点“y”,将y设为空节点。x ← root[T]                       // 设“红黑树T”的根节点为“x”while x ≠ nil[T]                  // 找出要插入的节点“z”在二叉树T中的位置“y”do y ← x                      if key[z] < key[x]  then x ← left[x]  else x ← right[x]  p[z] ← y                          // 设置 “z的父亲” 为 “y”if y = nil[T]                     then root[T] ← z               // 情况1:若y是空节点,则将z设为根else if key[z] < key[y]        then left[y] ← z       // 情况2:若“z所包含的值” < “y所包含的值”,则将z设为“y的左孩子”else right[y] ← z      // 情况3:(“z所包含的值” >= “y所包含的值”)将z设为“y的右孩子” left[z] ← nil[T]                  // z的左孩子设为空right[z] ← nil[T]                 // z的右孩子设为空。至此,已经完成将“节点z插入到二叉树”中了。color[z] ← RED                    // 将z着色为“红色”RB-INSERT-FIXUP(T, z)             // 通过RB-INSERT-FIXUP对红黑树的节点进行颜色修改以及旋转,让树T仍然是一颗红黑树

总体上就是一个二叉搜索树的插入,主要的调整请看我们下面的关于RB-INSERT-FIXUP的伪码:

RB-INSERT-FIXUP(T, z)
while color[p[z]] = RED                                                  // 若“当前节点(z)的父节点是红色”,则进行以下处理。do if p[z] = left[p[p[z]]]                                           // 若“z的父节点”是“z的祖父节点的左孩子”,则进行以下处理。then y ← right[p[p[z]]]                                        // 将y设置为“z的叔叔节点(z的祖父节点的右孩子)”if color[y] = RED                                         // Case 1条件:叔叔是红色then color[p[z]] ← BLACK                    ▹ Case 1   //  (01) 将“父节点”设为黑色。color[y] ← BLACK                       ▹ Case 1   //  (02) 将“叔叔节点”设为黑色。color[p[p[z]]] ← RED                   ▹ Case 1   //  (03) 将“祖父节点”设为“红色”。z ← p[p[z]]                            ▹ Case 1   //  (04) 将“祖父节点”设为“当前节点”(红色节点)else if z = right[p[z]]                                // Case 2条件:叔叔是黑色,且当前节点是右孩子then z ← p[z]                       ▹ Case 2   //  (01) 将“父节点”作为“新的当前节点”。LEFT-ROTATE(T, z)              ▹ Case 2   //  (02) 以“新的当前节点”为支点进行左旋。color[p[z]] ← BLACK                 ▹ Case 3   // Case 3条件:叔叔是黑色,且当前节点是左孩子。(01) 将“父节点”设为“黑色”。color[p[p[z]]] ← RED                ▹ Case 3   //  (02) 将“祖父节点”设为“红色”。RIGHT-ROTATE(T, p[p[z]])            ▹ Case 3   //  (03) 以“祖父节点”为支点进行右旋。else (same as then clause with "right" and "left" exchanged)      // 若“z的父节点”是“z的祖父节点的右孩子”,将上面的操作中“right”和“left”交换位置,然后依次执行。
color[root[T]] ← BLACK

根据被插入节点的父节点的情况,可以将”当节点z被着色为红色节点,并插入二叉树”划分为三种情况来处理。
① 情况说明:被插入的节点是根节点。
处理方法:直接把此节点涂为黑色。
② 情况说明:被插入的节点的父节点是黑色。
处理方法:什么也不需要做。节点被插入后,仍然是红黑树。
③ 情况说明:被插入的节点的父节点是红色。
处理方法:那么,该情况与红黑树的“特性(5)”相冲突。这种情况下,被插入节点是一定存在非空祖父节点的;进一步的讲,被插入节点也一定存在叔叔节点(即使叔叔节点为空,我们也视之为存在,空节点本身就是黑色节点)。理解这点之后,我们依据”叔叔节点的情况”,将这种情况进一步划分为3种情况(Case)。

title现象说明处理策略
Case 1当前节点的父节点是红色,且当前节点的祖父节点的另一个子节点(叔叔节点)也是红色.(01) 将“父节点”设为黑色。
(02) 将“叔叔节点”设为黑色。
(03) 将“祖父节点”设为“红色”。
(04) 将“祖父节点”设为“当前节点”(红色节点);即,之后继续对“当前节点”进行操作。
Case 2当前节点的父节点是红色,叔叔节点是黑色,且当前节点是其父节点的右孩子(01) 将“父节点”作为“新的当前节点”。
(02) 以“新的当前节点”为支点进行左旋。
Case 3当前节点的父节点是红色,叔叔节点是黑色,且当前节点是其父节点的左孩子(01) 将“父节点”设为“黑色”。
(02) 将“祖父节点”设为“红色”。
(03) 以“祖父节点”为支点进行右旋。

上面三种情况(Case)处理问题的核心思路都是:将红色的节点移到根节点;然后,将根节点设为黑色。下面对它们详细进行介绍。

Case 1 叔叔是红色

现象说明

当前节点(即,被插入节点)的父节点是红色,且当前节点的祖父节点的另一个子节点(叔叔节点)也是红色。

处理策略
(01) 将“父节点”设为黑色。
(02) 将“叔叔节点”设为黑色。
(03) 将“祖父节点”设为“红色”。
(04) 将“祖父节点”设为“当前节点”(红色节点);即,之后继续对“当前节点”进行操作。

下面谈谈为什么要这样处理。(建议理解的时候,通过下面的图进行对比)

“当前节点”和“父节点”都是红色,违背“特性(4)”。所以,将“父节点”设置“黑色”以解决这个问题。

第一,为什么“祖父节点”之前是黑色?这个应该很容易想明白,因为在变换操作之前,该树是红黑树,“父节点”是红色,那么“祖父节点”一定是黑色。

第二,为什么将“祖父节点”由“黑色”变成红色,同时,将“叔叔节点”由“红色”变成“黑色”;能解决“包含‘父节点’的分支的黑色节点的总数增加了1”的问题。这个道理也很简单。“包含‘父节点’的分支的黑色节点的总数增加了1” 同时也意味着 “包含‘祖父节点’的分支的黑色节点的总数增加了1”,既然这样,我们通过将“祖父节点”由“黑色”变成“红色”以解决“包含‘祖父节点’的分支的黑色节点的总数增加了1”的问题; 但是,这样处理之后又会引起另一个问题“包含‘叔叔’节点的分支的黑色节点的总数减少了1”,现在我们已知“叔叔节点”是“红色”,将“叔叔节点”设为“黑色”就能解决这个问题。 所以,将“祖父节点”由“黑色”变成红色,同时,将“叔叔节点”由“红色”变成“黑色”;就解决了该问题。
按照上面的步骤处理之后:当前节点、父节点、叔叔节点之间都不会违背红黑树特性,但祖父节点却不一定。若此时,祖父节点是根节点,直接将祖父节点设为“黑色”,那就完全解决这个问题了;若祖父节点不是根节点,那我们需要将“祖父节点”设为“新的当前节点”,接着对“新的当前节点”进行分析。

示意图

这里写图片描述

注意:图中节点 50 少了一个右的黑色空子树。

Case 2 叔叔是黑色,且当前节点是右孩子

现象说明
当前节点(即,被插入节点)的父节点是红色,叔叔节点是黑色,且当前节点是其父节点的右孩子

处理策略
(01) 将“父节点”作为“新的当前节点”。
(02) 以“新的当前节点”为支点进行左旋。

下面谈谈为什么要这样处理。(建议理解的时候,通过下面的图进行对比)
首先,将“父节点”作为“新的当前节点”;接着,以“新的当前节点”为支点进行左旋。 为了便于理解,我们先说明第(02)步,再说明第(01)步;为了便于说明,我们设置“父节点”的代号为F(Father),“当前节点”的代号为S(Son)。
为什么要“以F为支点进行左旋”呢?根据已知条件可知:S是F的右孩子。而之前我们说过,我们处理红黑树的核心思想:将红色的节点移到根节点;然后,将根节点设为黑色。既然是“将红色的节点移到根节点”,那就是说要不断的将破坏红黑树特性的红色节点上移(即向根方向移动)。 而S又是一个右孩子,因此,我们可以通过“左旋”来将S上移!
按照上面的步骤(以F为支点进行左旋)处理之后:若S变成了根节点,那么直接将其设为“黑色”,就完全解决问题了;若S不是根节点,那我们需要执行步骤(01),即“将F设为‘新的当前节点’”。那为什么不继续以S为新的当前节点继续处理,而需要以F为新的当前节点来进行处理呢?这是因为“左旋”之后,F变成了S的“子节点”,即S变成了F的父节点;而我们处理问题的时候,需要从下至上(由叶到根)方向进行处理;也就是说,必须先解决“孩子”的问题,再解决“父亲”的问题;所以,我们执行步骤(01):将“父节点”作为“新的当前节点”。

示意图

这里写图片描述

Case 3 叔叔是黑色,且当前节点是左孩子

现象说明
当前节点(即,被插入节点)的父节点是红色,叔叔节点是黑色,且当前节点是其父节点的左孩子

处理策略
(01) 将“父节点”设为“黑色”。
(02) 将“祖父节点”设为“红色”。
(03) 以“祖父节点”为支点进行右旋。

下面谈谈为什么要这样处理。(建议理解的时候,通过下面的图进行对比)
为了便于说明,我们设置“当前节点”为S(Original Son),“兄弟节点”为B(Brother),“叔叔节点”为U(Uncle),“父节点”为F(Father),祖父节点为G(Grand-Father)。
S和F都是红色,违背了红黑树的“特性(4)”,我们可以将F由“红色”变为“黑色”,就解决了“违背‘特性(4)’”的问题;但却引起了其它问题:违背特性(5),因为将F由红色改为黑色之后,所有经过F的分支的黑色节点的个数增加了1。那我们如何解决“所有经过F的分支的黑色节点的个数增加了1”的问题呢? 我们可以通过“将G由黑色变成红色”,同时“以G为支点进行右旋”来解决。

示意图

这里写图片描述


删除

将红黑树内的某一个节点删除。需要执行的操作依次是:首先,将红黑树当作一颗二叉查找树,将该节点从二叉查找树中删除;然后,通过”旋转和重新着色”等一系列来修正该树,使之重新成为一棵红黑树。详细描述如下:

第一步:将红黑树当作一颗二叉查找树,将节点删除。这和”删除常规二叉查找树中删除节点的方法是一样的”。分3种情况:
① 被删除节点没有儿子,即为叶节点。那么,直接将该节点删除就OK了。
② 被删除节点只有一个儿子。那么,直接删除该节点,并用该节点的唯一子节点顶替它的位置。
③ 被删除节点有两个儿子。那么,先找出它的后继节点;然后把“它的后继节点的内容”复制给“该节点的内容”;之后,删除“它的后继节点”。在这里,后继节点相当于替身,在将后继节点的内容复制给”被删除节点”之后,再将后继节点删除。这样就巧妙的将问题转换为”删除后继节点”的情况了,下面就考虑后继节点。 在”被删除节点”有两个非空子节点的情况下,它的后继节点不可能是双子非空。既然”的后继节点”不可能双子都非空,就意味着”该节点的后继节点”要么没有儿子,要么只有一个儿子。若没有儿子,则按”情况① “进行处理;若只有一个儿子,则按”情况② “进行处理。

第一步比较简单,就是二叉搜索树的删除节点,可以参见我以前的博客。第二步才是重点。

第二步:通过”旋转和重新着色”等一系列来修正该树,使之重新成为一棵红黑树。

删除伪码

RB-DELETE(T, z)
if left[z] = nil[T] or right[z] = nil[T]         then y ← z                                  // 若“z的左孩子” 或 “z的右孩子”为空,则将“z”赋值给 “y”;else y ← TREE-SUCCESSOR(z)                  // 否则,将“z的后继节点”赋值给 “y”。
if left[y] ≠ nil[T]then x ← left[y]                            // 若“y的左孩子” 不为空,则将“y的左孩子” 赋值给 “x”;else x ← right[y]                           // 否则,“y的右孩子” 赋值给 “x”。
p[x] ← p[y]                                    // 将“y的父节点” 设置为 “x的父节点”
if p[y] = nil[T]                               then root[T] ← x                            // 情况1:若“y的父节点” 为空,则设置“x” 为 “根节点”。else if y = left[p[y]]                    then left[p[y]] ← x                 // 情况2:若“y是它父节点的左孩子”,则设置“x” 为 “y的父节点的左孩子”else right[p[y]] ← x                // 情况3:若“y是它父节点的右孩子”,则设置“x” 为 “y的父节点的右孩子”
if y ≠ z                                    then key[z] ← key[y]                        // 若“y的值” 赋值给 “z”。注意:这里只拷贝z的值给y,而没有拷贝z的颜色!!!copy y's satellite data into z         
if color[y] = BLACK                            then RB-DELETE-FIXUP(T, x)                  // 若“y为黑节点”,则调用
return y

重新调整伪码

RB-DELETE-FIXUP(T, x)
while x ≠ root[T] and color[x] = BLACK  do if x = left[p[x]]      then w ← right[p[x]]                                             // 若 “x”是“它父节点的左孩子”,则设置 “w”为“x的叔叔”(即x为它父节点的右孩子)                                          if color[w] = RED                                           // Case 1: x是“黑+黑”节点,x的兄弟节点是红色。(此时x的父节点和x的兄弟节点的子节点都是黑节点)。then color[w] ← BLACK                        ▹  Case 1   //   (01) 将x的兄弟节点设为“黑色”。color[p[x]] ← RED                       ▹  Case 1   //   (02) 将x的父节点设为“红色”。LEFT-ROTATE(T, p[x])                    ▹  Case 1   //   (03) 对x的父节点进行左旋。w ← right[p[x]]                         ▹  Case 1   //   (04) 左旋后,重新设置x的兄弟节点。if color[left[w]] = BLACK and color[right[w]] = BLACK       // Case 2: x是“黑+黑”节点,x的兄弟节点是黑色,x的兄弟节点的两个孩子都是黑色。then color[w] ← RED                          ▹  Case 2   //   (01) 将x的兄弟节点设为“红色”。x ←  p[x]                               ▹  Case 2   //   (02) 设置“x的父节点”为“新的x节点”。else if color[right[w]] = BLACK                          // Case 3: x是“黑+黑”节点,x的兄弟节点是黑色;x的兄弟节点的左孩子是红色,右孩子是黑色的。then color[left[w]] ← BLACK          ▹  Case 3   //   (01) 将x兄弟节点的左孩子设为“黑色”。color[w] ← RED                  ▹  Case 3   //   (02) 将x兄弟节点设为“红色”。RIGHT-ROTATE(T, w)              ▹  Case 3   //   (03) 对x的兄弟节点进行右旋。w ← right[p[x]]                 ▹  Case 3   //   (04) 右旋后,重新设置x的兄弟节点。color[w] ← color[p[x]]                 ▹  Case 4   // Case 4: x是“黑+黑”节点,x的兄弟节点是黑色;x的兄弟节点的右孩子是红色的。(01) 将x父节点颜色 赋值给 x的兄弟节点。color[p[x]] ← BLACK                    ▹  Case 4   //   (02) 将x父节点设为“黑色”。color[right[w]] ← BLACK                ▹  Case 4   //   (03) 将x兄弟节点的右子节设为“黑色”。LEFT-ROTATE(T, p[x])                   ▹  Case 4   //   (04) 对x的父节点进行左旋。x ← root[T]                            ▹  Case 4   //   (05) 设置“x”为“根节点”。else (same as then clause with "right" and "left" exchanged)        // 若 “x”是“它父节点的右孩子”,将上面的操作中“right”和“left”交换位置,然后依次执行。
color[x] ← BLACK

前面我们将”删除红黑树中的节点”大致分为两步,在第一步中”将红黑树当作一颗二叉查找树,将节点删除”后,可能违反”特性(2)、(4)、(5)”三个特性。第二步需要解决上面的三个问题,进而保持红黑树的全部特性。

为了便于分析,我们假设”x包含一个额外的黑色”(x原本的颜色还存在),这样就不会违反”特性(5)”。为什么呢?
通过RB-DELETE算法,我们知道:删除节点y之后,x占据了原来节点y的位置。 既然删除y(y是黑色),意味着减少一个黑色节点;那么,再在该位置上增加一个黑色即可。这样,当我们假设”x包含一个额外的黑色”,就正好弥补了”删除y所丢失的黑色节点”,也就不会违反”特性(5)”。 因此,假设”x包含一个额外的黑色”(x原本的颜色还存在),这样就不会违反”特性(5)”。
现在,x不仅包含它原本的颜色属性,x还包含一个额外的黑色。即x的颜色属性是”红+黑”或”黑+黑”,它违反了”特性(1)”。

现在,我们面临的问题,由解决”违反了特性(2)、(4)、(5)三个特性”转换成了”解决违反特性(1)、(2)、(4)三个特性”。RB-DELETE-FIXUP需要做的就是通过算法恢复红黑树的特性(1)、(2)、(4)。RB-DELETE-FIXUP的思想是:将x所包含的额外的黑色不断沿树上移(向根方向移动),直到出现下面的姿态
a) x指向一个”红+黑”节点。此时,将x设为一个”黑”节点即可。
b) x指向根。此时,将x设为一个”黑”节点即可。
c) 非前面两种姿态。

将上面的姿态,可以概括为3种情况。
① 情况说明:x是“红+黑”节点。
处理方法:直接把x设为黑色,结束。此时红黑树性质全部恢复。
② 情况说明:x是“黑+黑”节点,且x是根。
处理方法:什么都不做,结束。此时红黑树性质全部恢复。
③ 情况说明:x是“黑+黑”节点,且x不是根。
处理方法:这种情况又可以划分为4种子情况。这4种子情况如下表所示:

title现象说明处理策略
Case 1x是”黑+黑”节点,x的兄弟节点是红色。(此时x的父节点和x的兄弟节点的子节点都是黑节点)。(01) 将x的兄弟节点设为“黑色”。
(02) 将x的父节点设为“红色”。
(03) 对x的父节点进行左旋。
(04) 左旋后,重新设置x的兄弟节点。
Case 2x是“黑+黑”节点,x的兄弟节点是黑色,x的兄弟节点的两个孩子都是黑色。(01) 将x的兄弟节点设为“红色”。
(02) 设置“x的父节点”为“新的x节点”。
Case 3x是“黑+黑”节点,x的兄弟节点是黑色;x的兄弟节点的左孩子是红色,右孩子是黑色的。(01) 将x兄弟节点的左孩子设为“黑色”。
(02) 将x兄弟节点设为“红色”。
(03) 对x的兄弟节点进行右旋。
(04) 右旋后,重新设置x的兄弟节点。
Case 4x是“黑+黑”节点,x的兄弟节点是黑色;x的兄弟节点的右孩子是红色的,x的兄弟节点的左孩子任意颜色。(01) 将x父节点颜色 赋值给 x的兄弟节点。
(02) 将x父节点设为“黑色”。
(03) 将x兄弟节点的右子节设为“黑色”。
(04) 对x的父节点进行左旋。
(05) 设置“x”为“根节点”。

Case 1 x是”黑+黑”节点,x的兄弟节点是红色

现象说明
x是”黑+黑”节点,x的兄弟节点是红色。(此时x的父节点和x的兄弟节点的子节点都是黑节点)。

处理策略
(01) 将x的兄弟节点设为“黑色”。
(02) 将x的父节点设为“红色”。
(03) 对x的父节点进行左旋。
(04) 左旋后,重新设置x的兄弟节点。

下面谈谈为什么要这样处理。(建议理解的时候,通过下面的图进行对比)
这样做的目的是将“Case 1”转换为“Case 2”、“Case 3”或“Case 4”,从而进行进一步的处理。对x的父节点进行左旋;左旋后,为了保持红黑树特性,就需要在左旋前“将x的兄弟节点设为黑色”,同时“将x的父节点设为红色”;左旋后,由于x的兄弟节点发生了变化,需要更新x的兄弟节点,从而进行后续处理。

示意图

这里写图片描述

Case 2 x是”黑+黑”节点,x的兄弟节点是黑色,x的兄弟节点的两个孩子都是黑色

现象说明
x是“黑+黑”节点,x的兄弟节点是黑色,x的兄弟节点的两个孩子都是黑色。

处理策略
(01) 将x的兄弟节点设为“红色”。
(02) 设置“x的父节点”为“新的x节点”。

下面谈谈为什么要这样处理。(建议理解的时候,通过下面的图进行对比)
这个情况的处理思想:是将“x中多余的一个黑色属性上移(往根方向移动)”。 x是“黑+黑”节点,我们将x由“黑+黑”节点 变成 “黑”节点,多余的一个“黑”属性移到x的父节点中,即x的父节点多出了一个黑属性(若x的父节点原先是“黑”,则此时变成了“黑+黑”;若x的父节点原先时“红”,则此时变成了“红+黑”)。 此时,需要注意的是:所有经过x的分支中黑节点个数没变化;但是,所有经过x的兄弟节点的分支中黑色节点的个数增加了1(因为x的父节点多了一个黑色属性)!为了解决这个问题,我们需要将“所有经过x的兄弟节点的分支中黑色节点的个数减1”即可,那么就可以通过“将x的兄弟节点由黑色变成红色”来实现。
经过上面的步骤(将x的兄弟节点设为红色),多余的一个颜色属性(黑色)已经跑到x的父节点中。我们需要将x的父节点设为“新的x节点”进行处理。若“新的x节点”是“黑+红”,直接将“新的x节点”设为黑色,即可完全解决该问题;若“新的x节点”是“黑+黑”,则需要对“新的x节点”进行进一步处理。

示意图

这里写图片描述

Case 3 x是“黑+黑”节点,x的兄弟节点是黑色;x的兄弟节点的左孩子是红色,右孩子是黑色的

现象说明
x是“黑+黑”节点,x的兄弟节点是黑色;x的兄弟节点的左孩子是红色,右孩子是黑色的。

处理策略
(01) 将x兄弟节点的左孩子设为“黑色”。
(02) 将x兄弟节点设为“红色”。
(03) 对x的兄弟节点进行右旋。
(04) 右旋后,重新设置x的兄弟节点。

下面谈谈为什么要这样处理。(建议理解的时候,通过下面的图进行对比)
我们处理“Case 3”的目的是为了将“Case 3”进行转换,转换成“Case 4”,从而进行进一步的处理。转换的方式是对x的兄弟节点进行右旋;为了保证右旋后,它仍然是红黑树,就需要在右旋前“将x的兄弟节点的左孩子设为黑色”,同时“将x的兄弟节点设为红色”;右旋后,由于x的兄弟节点发生了变化,需要更新x的兄弟节点,从而进行后续处理。

示意图

这里写图片描述

Case 4 x是“黑+黑”节点,x的兄弟节点是黑色;x的兄弟节点的右孩子是红色的,x的兄弟节点的左孩子任意颜色

现象说明
x是“黑+黑”节点,x的兄弟节点是黑色;x的兄弟节点的右孩子是红色的,x的兄弟节点的左孩子任意颜色。

处理策略
(01) 将x父节点颜色 赋值给 x的兄弟节点。
(02) 将x父节点设为“黑色”。
(03) 将x兄弟节点的右子节设为“黑色”。
(04) 对x的父节点进行左旋。
(05) 设置“x”为“根节点”。

下面谈谈为什么要这样处理。(建议理解的时候,通过下面的图进行对比)
我们处理“Case 4”的目的是:去掉x中额外的黑色,将x变成单独的黑色。处理的方式是“:进行颜色修改,然后对x的父节点进行左旋。下面,我们来分析是如何实现的。
为了便于说明,我们设置“当前节点”为S(Original Son),“兄弟节点”为B(Brother),“兄弟节点的左孩子”为BLS(Brother’s Left Son),“兄弟节点的右孩子”为BRS(Brother’s Right Son),“父节点”为F(Father)。
我们要对F进行左旋。但在左旋前,我们需要调换F和B的颜色,并设置BRS为黑色。为什么需要这里处理呢?因为左旋后,F和BLS是父子关系,而我们已知BL是红色,如果F是红色,则违背了“特性(4)”;为了解决这一问题,我们将“F设置为黑色”。 但是,F设置为黑色之后,为了保证满足“特性(5)”,即为了保证左旋之后:
第一,“同时经过根节点和S的分支的黑色节点个数不变”。
若满足“第一”,只需要S丢弃它多余的颜色即可。因为S的颜色是“黑+黑”,而左旋后“同时经过根节点和S的分支的黑色节点个数”增加了1;现在,只需将S由“黑+黑”变成单独的“黑”节点,即可满足“第一”。
第二,“同时经过根节点和BLS的分支的黑色节点数不变”。
若满足“第二”,只需要将“F的原始颜色”赋值给B即可。之前,我们已经将“F设置为黑色”(即,将B的颜色”黑色”,赋值给了F)。至此,我们算是调换了F和B的颜色。
第三,“同时经过根节点和BRS的分支的黑色节点数不变”。
在“第二”已经满足的情况下,若要满足“第三”,只需要将BRS设置为“黑色”即可。
经过,上面的处理之后。红黑树的特性全部得到的满足!接着,我们将x设为根节点,就可以跳出while循环(参考伪代码);即完成了全部处理。

至此,我们就完成了Case 4的处理。理解Case 4的核心,是了解如何“去掉当前节点额外的黑色”。

示意图

这里写图片描述


http://chatgpt.dhexx.cn/article/wKhRTRVY.shtml

相关文章

二叉树之红黑树

红黑树 概述 为什么要有红黑树&#xff1f;&#xff1f;&#xff1f; 特点 红黑规则 如何在红黑树上添加节点&#xff1f; &#xff08;1&#xff09;我们不妨假设加入的节点都是黑色 &#xff08;2&#xff09;如果我们加入的节点都是红色 红黑树添加节点后如何保持红…

红黑二叉树

红黑树 红黑树是每个节点都带有颜色属性的二叉查找树&#xff0c;颜色或红色或黑色。在二叉查找树强制一般要求以外&#xff0c;对于任何有效的红黑树我们增加了如下的额外要求: 节点是红色或黑色。 根节点是黑色。 每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有…

红黑树-Java实现

目录 一、定义 二、插入 三、删除 四、全部代码 五、颜色效果 一、定义 红黑树是特殊的平衡二叉树&#xff0c;具有以下特性&#xff1a; 1、根节点的颜色是黑色 2、节点颜色要么是黑色、要么是红色 3、如果一个节点的颜色是红色&#xff0c;则它的子节点必须是黑色&…

红黑二叉树原理分析

1.引言 HashMap的基本结构是数组&#xff0c;链表和红黑树。以数组为基本形态&#xff0c;数组中的元素先以链表形式储存&#xff0c;当链表的长 度超过8时&#xff08;包含数组上的那个链表头&#xff09;就会将链表转换为红黑树&#xff0c;以加快修改和查询效率。当然除了H…

理解红黑树及代码实现

1.红黑树定义 红黑树是一颗 红-黑的平衡二叉树,它具有二叉树的所有特性,是一颗自平衡的排序二叉树.(树中任何节点值都大于左子节点的值&#xff0c;而且都小于右子节点的值),其检索效率高&#xff0c;它是一颗空树或它的左右两个子树高度差的绝对值不超过1&#xff0c;并且左右…

红黑二叉树的漫画讲解(轻松理解红黑二叉树原理)

———————————— 二叉查找树&#xff08;BST&#xff09;具备什么特性呢&#xff1f; 1.左子树上所有结点的值均小于或等于它的根结点的值。 2.右子树上所有结点的值均大于或等于它的根结点的值。 3.左、右子树也分别为二叉排序树。 下图中这棵树&#xff0c;就是…

Java的二叉树、红黑树、B+树

数组和链表是常用的数据结构&#xff0c;数组虽然查找快&#xff08;有序数组可以通过二分法查找&#xff09;&#xff0c;但是插入和删除是比较慢的&#xff1b;而链表&#xff0c;插入和删除很快&#xff08;只需要改变一些引用值&#xff09;&#xff0c;但是查找就很慢&…

二叉树与红黑树

二叉树的形成 二叉树是n(n>0)个结点的有限集合&#xff0c;该集合或者为空集&#xff08;称为空二叉树&#xff09;&#xff0c;或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树组成 二叉树特点 由二叉树定义以及图示分析得出二叉树有以下特点&#xff1…

红黑树(C++实现)

文章目录 红黑树的概念红黑树的性质红黑树结点的定义红黑树的插入红黑树的验证红黑树的查找红黑树的删除红黑树与AVL树的比较 红黑树的概念 红黑树是一种二叉搜索树&#xff0c;但在每个结点上增加了一个存储位用于表示结点的颜色&#xff0c;这个颜色可以是红色的&#xff0c;…

红黑二叉树详解及理论分析

发表于我的博客网站(prajna.top)&#xff1a; http://prajna.top/doc/2/175 什么是红-黑二叉树&#xff1f; 红-黑二叉树首先是一颗二叉树&#xff0c;它具有二叉树的所有性质&#xff0c;是一种平衡二叉树。普通二叉树在生成过程中&#xff0c;容易出现不平衡的现象&#xff…

二叉树到红黑树

二叉树查找树 又叫二叉排序树。二叉查找树或者是一棵空树&#xff0c;或者是一棵具有如下性质的二叉树&#xff1a; 对于任何一个结点X若它的左子树非空&#xff0c;则左子树上所有结点的值均小于等于X的值&#xff1b;若它的右子树非空&#xff0c;则右子树上所有结点的值均大…

详解c++---红黑二叉树的原理和实现

目录标题 什么是红黑二叉树树红黑树的性质红黑树的效率分析红黑树的准备工作红黑树的insert函数节点的调整情况一情况二情况三 转换的实现打印函数find函数检查函数 什么是红黑二叉树树 avl树是通过控制平衡因子来控制二叉搜索树的平衡&#xff0c;当某个节点的平衡因子等于2或…

红黑树和二叉树有什么区别?

红黑树和二叉树有什么区别&#xff1f; 什么是二叉树&#xff1f;什么是红黑树&#xff1f; 二叉树&#xff08;Binary Tree&#xff09;是指每个节点最多只有两个分支的树结构&#xff0c;即不存在分支大于 2 的节点&#xff0c;二叉树的数据结构如下图所示 这是一棵拥有 6 …

二叉树系列:红黑树

介绍 红黑树(Red-Black Tree&#xff0c;简称R-B Tree)&#xff0c;它一种特殊的二叉查找树。红黑树是特殊的二叉查找树&#xff0c;意味着它满足二叉查找树的特征&#xff1a;任意一个节点所包含的键值&#xff0c;大于等于左孩子的键值&#xff0c;小于等于右孩子的键值。除了…

红黑树结构原理的图文讲解(非代码)

1.引言 HashMap的基本结构是数组&#xff0c;链表和红黑树。以数组为基本形态&#xff0c;数组中的元素先以链表形式储存&#xff0c;当链表的长度超过8时&#xff08;包含数组上的那个链表头&#xff09;就会将链表转换为红黑树&#xff0c;以加快修改和查询效率。当然除了Ha…

二叉树与红黑树见解

目录 一、红黑树简介二、 红黑树的特性三、红黑数的应用四、红黑树的原理实现4.1 识别红黑树4.2 红黑树节点的旋转4.3 插入节点4.3.1分情况讨论&#xff1a;4.3.2 代码示例 4.4删除节点相关引用 一、红黑树简介 红黑树是一种自平衡的二叉查找树&#xff0c;是一种高效的查找树…

什么是红黑树(内存最优的二叉树)

一.红黑树定义 红黑树(Red Black Tree) 是一种自平衡二叉查找树&#xff0c;是在计算机科学中用到的一种数据结构&#xff0c;典型的用途是实现关联数组。 它是在1972年由Rudolf Bayer发明的&#xff0c;当时被称为平衡二叉B树(symmetric binary B-trees)。后来&#xff0c;在1…

【二叉树进阶】红黑树(Red Black Tree) - 平衡二叉搜索树

文章目录 一、红黑树的概念二、红黑树的性质2.1 红黑树和AVL树效率对比 三、红黑树的结构&#xff08;KV模型&#xff09;四、红黑树的插入4.1 插入节点4.2 平衡化操作&#xff08;难点&#xff09;4.2.1 情况一4.2.2 情况二4.2.3 情况三 4.3 总结 五、红黑树的验证六、红黑树的…

MySQL 慢查询日志导入 Elasticsearch 可视化查询分析

当应用程序后台 SQL 查询慢的时候我们一般第一时间会查看数据库慢查询记录&#xff0c;但是慢查询记录是原始文本&#xff0c;直接查询搜索分析比较费时费力&#xff0c;虽然业界有针对 MySQL 慢查询分析的命令行工具&#xff08;比如&#xff1a;pt-query-digest&#xff09;&…

MySQL 慢查询日志如何查看及配置

简介 MySQL 慢查询日志是排查问题 SQL 语句&#xff0c;以及检查当前 MySQL 性能的一个重要功能。 查看是否开启慢查询功能&#xff1a; 说明&#xff1a; slow_query_log 慢查询开启状态 slow_query_log_file 慢查询日志存放的位置&#xff08;这个目录需要MySQL的运行帐号的…