贝叶斯网络是神经网络吗,贝叶斯网络和神经网络

article/2025/10/2 15:50:52

深度信念网络与深度贝叶斯网络有什么区别

1、贝叶斯网络是:一种概率网络,它是基于概率推理的图形化网络,而贝叶斯公式则是这个概率网络的基础。

贝叶斯网络是基于概率推理的数学模型,所谓概率推理就是通过一些变量的信息来获取其他的概率信息的过程,基于概率推理的贝叶斯网络(Bayesiannetwork)是为了解决不定性和不完整性问题而提出的,它对于解决复杂设备不确定性和关联性引起的故障有很的优势,在多个领域中获得广泛应用。

2、贝叶斯分类算法是:统计学的一种分类方法,它是一类利用概率统计知识进行分类的算法。

在许多场合,朴素贝叶斯(Na?veBayes,NB)分类算法可以与决策树和神经网络分类算法相媲美,该算法能运用到大型数据库中,而且方法简单、分类准确率高、速度快。

3、贝叶斯网络和贝叶斯分类算法的区别:由于贝叶斯定理假设一个属性值对给定类的影响独立于其它属性的值,而此假设在实际情况中经常是不成立的,因此其分类准确率可能会下降。

为此,就衍生出许多降低独立性假设的贝叶斯分类算法,如TAN(treeaugmentedBayesnetwork)算法。

贝叶斯分类算法是统计学的一种分类方法,它是一类利用概率统计知识进行分类的算法。

在许多场合,朴素贝叶斯(Na?veBayes,NB)分类算法可以与决策树和神经网络分类算法相媲美,该算法能运用到大型数据库中,而且方法简单、分类准确率高、速度快。

由于贝叶斯定理假设一个属性值对给定类的影响独立于其它属性的值,而此假设在实际情况中经常是不成立的,因此其分类准确率可能会下降。

为此,就衍生出许多降低独立性假设的贝叶斯分类算法,如TAN(treeaugmentedBayesnetwork)算法。

谷歌人工智能写作项目:小发猫

机器学习里的贝叶斯估计是什么?

贝叶斯估计(Bayesianestimation),是在给定训练数据D时,确定假设空间H中的最佳假设常见的神经网络结构。最佳假设:一种方法是把它定义为在给定数据D以及H中不同假设的先验概率的有关知识下的最可能假设。

贝叶斯理论提供了一种计算假设概率的方法,基于假设的先验概率、给定假设下观察到不同数据的概率以及观察到的数据本身。

贝叶斯分类器的工作原理:就是求条件概率然后比较大小:条件概率概念:在已知b发生的情况下,a发生的概率。我们写做:p(a|b)。

例如:已知一本书有这些tag:tag1,tag2,tag3……它属于“人文”分类的概率是多少?属于“非人文”分类的概率呢?

假设p1表示在这种情况下,它属于“人文”的概率,p2表示这种情况下,它属于“非人文”的概率。如果p1>p2,那么这本书就属于“人文”,反过来就是“非人文”。我们不考虑p1=p2的情况。

所以,问题就变成了,如何通过tag1,tag2,tag3…来计算p1和p2?

知一本书有这些tag:tag1,tag2,tag3……它属于“人文”分类的概率表示为p(type1|tag:tag1,tag2,tag3...),类似的属于“非人文”分类的概率表示为p(type2|tag:tag1,tag2,tag3...),利用贝叶斯公式:P(A|B)P(B)=P(B|A)P(A),可以得到p(type1|tag1,tag2,tag3...)=p(tag1,tag2,tag3...|type1)*p(type1)/p(tag1,tag2,tag3...),p(type2|tag1,tag2,tag3...)=p(tag1,tag2,tag3...|type2)*p(type2)/p(tag1,tag2,tag3...),所以只需要得到p(tag1,tag2,tag3...|type1),p(type1),p(tag1,tag2,tag3...)的值就可以得到p(type1|tag1,tag2,tag3...)但做为分类器的大小比较,我们发现不需要全部得到值就可以比较大小,因为分母都是p(tag1,tag2,tag3...),所以我们只需要得到p(tag1,tag2,tag3...|type1)*p(type1)和p(tag1,tag2,tag3...|type2)*p(type2)的大小来比较即可;对于p(type1)的计算就是在整个训练数据中出现的type1类书籍出现的概率;p(type2)同理;简单;对于计算p(tag1,tag2,tag3...|type1),我们用到的是朴素贝叶斯,也就是说tag1和tag2和tag3等每个tag出现的概率是不互相影响的是独立的;所以p(tag1,tag2,tag3...|type1)=p(tag1|type1)*p(tag2|type1)*p(tag3|type1)*p(...|type1),也就是说,我们可以计算每一个tag,在type1书籍的所有tag中出现的概率,然后将它们乘起来,就得到我们想要的p(tag1,tag2,tag3...|type1);

深度学习的职业发展方向有哪些?

当前,人工智能发展借助深度学习技术突破得到了全面关注和助力推动,各国政府高度重视、资本热潮仍在加码,各界对其成为发展热点也达成了共识。

本文旨在分析深度学习技术现状,研判深度学习发展趋势,并针对我国的技术水平提出发展建议。一、深度学习技术现状深度学习是本轮人工智能爆发的关键技术。

人工智能技术在计算机视觉和自然语言处理等领域取得的突破性进展,使得人工智能迎来新一轮爆发式发展。而深度学习是实现这些突破性进展的关键技术。

其中,基于深度卷积网络的图像分类技术已超过人眼的准确率,基于深度神经网络的语音识别技术已达到95%的准确率,基于深度神经网络的机器翻译技术已接近人类的平均翻译水平。

准确率的大幅提升使得计算机视觉和自然语言处理进入产业化阶段,带来新产业的兴起。深度学习是大数据时代的算法利器,成为近几年的研究热点。和传统的机器学习算法相比,深度学习技术有着两方面的优势。

一是深度学习技术可随着数据规模的增加不断提升其性能,而传统机器学习算法难以利用海量数据持续提升其性能。

二是深度学习技术可以从数据中直接提取特征,削减了对每一个问题设计特征提取器的工作,而传统机器学习算法需要人工提取特征。

因此,深度学习成为大数据时代的热点技术,学术界和产业界都对深度学习展开了大量的研究和实践工作。深度学习各类模型全面赋能基础应用。卷积神经网络和循环神经网络是两类获得广泛应用的深度神经网络模型。

计算机视觉和自然语言处理是人工智能两大基础应用。卷积神经网络广泛应用于计算机视觉领域,在图像分类、目标检测、语义分割等任务上的表现大大超越传统方法。

循环神经网络适合解决序列信息相关问题,已广泛应用于自然语言处理领域,如语音识别、机器翻译、对话系统等。深度学习技术仍不完美,有待于进一步提升。

一是深度神经网络的模型复杂度高,巨量的参数导致模型尺寸大,难以部署到移动终端设备。二是模型训练所需的数据量大,而训练数据样本获取、标注成本高,有些场景样本难以获取。

三是应用门槛高,算法建模及调参过程复杂繁琐、算法设计周期长、系统实施维护困难。四是缺乏因果推理能力,图灵奖得主、贝叶斯网络之父JudeaPearl指出当前的深度学习不过只是“曲线拟合”。

五是存在可解释性问题,由于内部的参数共享和复杂的特征抽取与组合,很难解释模型到底学习到了什么,但出于安全性考虑以及伦理和法律的需要,算法的可解释性又是十分必要的。因此,深度学习仍需解决以上问题。

二、深度学习发展趋势深度神经网络呈现层数越来越深,结构越来越复杂的发展趋势。为了不断提升深度神经网络的性能,业界从网络深度和网络结构两方面持续进行探索。

神经网络的层数已扩展到上百层甚至上千层,随着网络层数的不断加深,其学习效果也越来越好,2015年微软提出的ResNet以152层的网络深度在图像分类任务上准确率首次超过人眼。

新的网络设计结构不断被提出,使得神经网络的结构越来越复杂。

如:2014年谷歌提出了Inception网络结构、2015年微软提出了残差网络结构、2016年黄高等人提出了密集连接网络结构,这些网络结构设计不断提升了深度神经网络的性能。

深度神经网络节点功能不断丰富。为了克服目前神经网络存在的局限性,业界探索并提出了新型神经网络节点,使得神经网络的功能越来越丰富。

2017年,杰弗里辛顿提出了胶囊网络的概念,采用胶囊作为网络节点,理论上更接近人脑的行为,旨在克服卷积神经网络没有空间分层和推理能力等局限性。

2018年,DeepMind、谷歌大脑、MIT的学者联合提出了图网络的概念,定义了一类新的模块,具有关系归纳偏置功能,旨在赋予深度学习因果推理的能力。深度神经网络工程化应用技术不断深化。

深度神经网络模型大都具有上亿的参数量和数百兆的占用空间,运算量大,难以部署到智能手机、摄像头和可穿戴设备等性能和资源受限的终端类设备。

为了解决这个问题,业界采用模型压缩技术降低模型参数量和尺寸,减少运算量。目前采用的模型压缩方法包括对已训练好的模型做修剪(如剪枝、权值共享和量化等)和设计更精细的模型(如MobileNet等)两类。

深度学习算法建模及调参过程繁琐,应用门槛高。为了降低深度学习的应用门槛,业界提出了自动化机器学习(AutoML)技术,可实现深度神经网络的自动化设计,简化使用流程。

深度学习与多种机器学习技术不断融合发展。

深度学习与强化学习融合发展诞生的深度强化学习技术,结合了深度学习的感知能力和强化学习的决策能力,克服了强化学习只适用于状态为离散且低维的缺陷,可直接从高维原始数据学习控制策略。

为了降低深度神经网络模型训练所需的数据量,业界引入了迁移学习的思想,从而诞生了深度迁移学习技术。迁移学习是指利用数据、任务或模型之间的相似性,将在旧领域学习过的模型,应用于新领域的一种学习过程。

通过将训练好的模型迁移到类似场景,实现只需少量的训练数据就可以达到较好的效果。三、未来发展建议加强图网络、深度强化学习以及生成式对抗网络等前沿技术研究。

由于我国在深度学习领域缺乏重大原创性研究成果,基础理论研究贡献不足,如胶囊网络、图网络等创新性、原创性概念是由美国专家提出,我国研究贡献不足。

在深度强化学习方面,目前最新的研究成果大都是由DeepMind和OpenAI等国外公司的研究人员提出,我国尚没有突破性研究成果。

近几年的研究热点生成式对抗网络(GAN)是由美国的研究人员Goodfellow提出,并且谷歌、facebook、twitter和苹果等公司纷纷提出了各种改进和应用模型,有力推动了GAN技术的发展,而我国在这方面取得的研究成果较少。

因此,应鼓励科研院所及企业加强深度神经网络与因果推理模型结合、生成式对抗网络以及深度强化学习等前沿技术的研究,提出更多原创性研究成果,增强全球学术研究影响力。

加快自动化机器学习、模型压缩等深度学习应用技术研究。依托国内的市场优势和企业的成长优势,针对具有我国特色的个性化应用需求,加快对深度学习应用技术的研究。

加强对自动化机器学习、模型压缩等技术的研究,加快深度学习的工程化落地应用。加强深度学习在计算机视觉领域应用研究,进一步提升目标识别等视觉任务的准确率,以及在实际应用场景中的性能。

加强深度学习在自然语言处理领域的应用研究,提出性能更优的算法模型,提升机器翻译、对话系统等应用的性能。

来源:产业智能官END更多精彩内容请登录官方网站往期精选▼1.饮鹿网2018-2019年中国人工智能产业创新百强榜单发布!2.饮鹿网2018-2019年中国人工智能产业Top20投资机构榜单发布!

3.饮鹿网2018-2019年中国大数据产业创新百强榜单发布!4.饮鹿网2018-2019年中国大数据产业Top20投资机构榜单发布!

5.饮鹿网2018-2019年中国物联网产业创新百强榜单发布!6.饮鹿网2018-2019年中国5G与物联网产业TOP20投资机构榜单发布!

7.饮鹿网2018-2019年中国集成电路产业创新百强榜单发布!8.饮鹿网2018-2019年中国集成电路产业Top20投资机构榜单发布!

9.饮鹿网2018-2019年中国企业服务产业创新百强榜单发布!10.饮鹿网2018-2019年中国企业服务产业TOP20投资机构榜单发布!

朴素贝叶斯算法不是可以直接分类,为什么还要机器学习

朴素贝叶斯本来就是机器学习里的一种分类器,而且只是生成模型中的一类。是生成模型的话,你得假设分布。”朴素“的话还得有独立性假设。结果如何和这些假设是否准确都有关系。

总体来说生成模型假阳性率和效率也都一般般。再者,给定图像的像素值,你觉得直接用这个特征来建表训练朴素贝叶斯的可行性如何?我觉得几乎没有可行性。

相比起自己设计图像类数据的特征提取,深度卷积完全不需要管这一步所以至少图像方面深度学习目前的优势是毋庸置疑的。朴素贝叶斯目前也就在自然语言之类的方面有不错的应用吧。

人工智能,机器学习,深度学习,到底有何区别

有人说,人工智能(AI)是未来,人工智能是科幻,人工智能也是我们日常生活中的一部分。这些评价可以说都是正确的,就看你指的是哪一种人工智能。

今年早些时候,GoogleDeepMind的AlphaGo打败了韩国的围棋大师李世乭九段。

在媒体描述DeepMind胜利的时候,将人工智能(AI)、机器学习(machinelearning)和深度学习(deeplearning)都用上了。

这三者在AlphaGo击败李世乭的过程中都起了作用,但它们说的并不是一回事。今天我们就用最简单的方法——同心圆,可视化地展现出它们三者的关系和应用。

如上图,人工智能是最早出现的,也是最大、最外侧的同心圆;其次是机器学习,稍晚一点;最内侧,是深度学习,当今人工智能大爆炸的核心驱动。五十年代,人工智能曾一度被极为看好。

之后,人工智能的一些较小的子集发展了起来。先是机器学习,然后是深度学习。深度学习又是机器学习的子集。深度学习造成了前所未有的巨大的影响。

从概念的提出到走向繁荣1956年,几个计算机科学家相聚在达特茅斯会议(DartmouthConferences),提出了“人工智能”的概念。

其后,人工智能就一直萦绕于人们的脑海之中,并在科研实验室中慢慢孵化。之后的几十年,人工智能一直在两极反转,或被称作人类文明耀眼未来的预言;或者被当成技术疯子的狂想扔到垃圾堆里。

坦白说,直到2012年之前,这两种声音还在同时存在。过去几年,尤其是2015年以来,人工智能开始大爆发。很大一部分是由于GPU的广泛应用,使得并行计算变得更快、更便宜、更有效。

当然,无限拓展的存储能力和骤然爆发的数据洪流(大数据)的组合拳,也使得图像数据、文本数据、交易数据、映射数据全面海量爆发。

让我们慢慢梳理一下计算机科学家们是如何将人工智能从最早的一点点苗头,发展到能够支撑那些每天被数亿用户使用的应用的。

| 人工智能(ArtificialIntelligence)——为机器赋予人的智能早在1956年夏天那次会议,人工智能的先驱们就梦想着用当时刚刚出现的计算机来构造复杂的、拥有与人类智慧同样本质特性的机器。

这就是我们现在所说的“强人工智能”(GeneralAI)。这个无所不能的机器,它有着我们所有的感知(甚至比人更多),我们所有的理性,可以像我们一样思考。

人们在电影里也总是看到这样的机器:友好的,像星球大战中的C-3PO;邪恶的,如终结者。强人工智能现在还只存在于电影和科幻小说中,原因不难理解,我们还没法实现它们,至少目前还不行。

我们目前能实现的,一般被称为“弱人工智能”(NarrowAI)。弱人工智能是能够与人一样,甚至比人更好地执行特定任务的技术。例如,Pinterest上的图像分类;或者Facebook的人脸识别。

这些是弱人工智能在实践中的例子。这些技术实现的是人类智能的一些具体的局部。但它们是如何实现的?这种智能是从何而来?这就带我们来到同心圆的里面一层,机器学习。

| 机器学习——一种实现人工智能的方法机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。

与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。机器学习直接来源于早期的人工智能领域。

传统算法包括决策树学习、推导逻辑规划、聚类、强化学习和贝叶斯网络等等。众所周知,我们还没有实现强人工智能。早期机器学习方法甚至都无法实现弱人工智能。

机器学习最成功的应用领域是计算机视觉,虽然也还是需要大量的手工编码来完成工作。

人们需要手工编写分类器、边缘检测滤波器,以便让程序能识别物体从哪里开始,到哪里结束;写形状检测程序来判断检测对象是不是有八条边;写分类器来识别字母“ST-O-P”。

使用以上这些手工编写的分类器,人们总算可以开发算法来感知图像,判断图像是不是一个停止标志牌。这个结果还算不错,但并不是那种能让人为之一振的成功。

特别是遇到云雾天,标志牌变得不是那么清晰可见,又或者被树遮挡一部分,算法就难以成功了。这就是为什么前一段时间,计算机视觉的性能一直无法接近到人的能力。它太僵化,太容易受环境条件的干扰。

随着时间的推进,学习算法的发展改变了一切。

| 深度学习——一种实现机器学习的技术人工神经网络(ArtificialNeuralNetworks)是早期机器学习中的一个重要的算法,历经数十年风风雨雨。

神经网络的原理是受我们大脑的生理结构——互相交叉相连的神经元启发。但与大脑中一个神经元可以连接一定距离内的任意神经元不同,人工神经网络具有离散的层、连接和数据传播的方向。

例如,我们可以把一幅图像切分成图像块,输入到神经网络的第一层。在第一层的每一个神经元都把数据传递到第二层。第二层的神经元也是完成类似的工作,把数据传递到第三层,以此类推,直到最后一层,然后生成结果。

每一个神经元都为它的输入分配权重,这个权重的正确与否与其执行的任务直接相关。最终的输出由这些权重加总来决定。我们仍以停止(Stop)标志牌为例。

将一个停止标志牌图像的所有元素都打碎,然后用神经元进行“检查”:八边形的外形、救火车般的红颜色、鲜明突出的字母、交通标志的典型尺寸和静止不动运动特性等等。

神经网络的任务就是给出结论,它到底是不是一个停止标志牌。神经网络会根据所有权重,给出一个经过深思熟虑的猜测——“概率向量”。

这个例子里,系统可能会给出这样的结果:86%可能是一个停止标志牌;7%的可能是一个限速标志牌;5%的可能是一个风筝挂在树上等等。然后网络结构告知神经网络,它的结论是否正确。

即使是这个例子,也算是比较超前了。直到前不久,神经网络也还是为人工智能圈所淡忘。其实在人工智能出现的早期,神经网络就已经存在了,但神经网络对于“智能”的贡献微乎其微。

主要问题是,即使是最基本的神经网络,也需要大量的运算。神经网络算法的运算需求难以得到满足。

不过,还是有一些虔诚的研究团队,以多伦多大学的GeoffreyHinton为代表,坚持研究,实现了以超算为目标的并行算法的运行与概念证明。但也直到GPU得到广泛应用,这些努力才见到成效。

我们回过头来看这个停止标志识别的例子。神经网络是调制、训练出来的,时不时还是很容易出错的。它最需要的,就是训练。

需要成百上千甚至几百万张图像来训练,直到神经元的输入的权值都被调制得十分精确,无论是否有雾,晴天还是雨天,每次都能得到正确的结果。

只有这个时候,我们才可以说神经网络成功地自学习到一个停止标志的样子;或者在Facebook的应用里,神经网络自学习了你妈妈的脸;又或者是2012年吴恩达(AndrewNg)教授在Google实现了神经网络学习到猫的样子等等。

吴教授的突破在于,把这些神经网络从基础上显著地增大了。层数非常多,神经元也非常多,然后给系统输入海量的数据,来训练网络。在吴教授这里,数据是一千万YouTube视频中的图像。

吴教授为深度学习(deeplearning)加入了“深度”(deep)。这里的“深度”就是说神经网络中众多的层。

现在,经过深度学习训练的图像识别,在一些场景中甚至可以比人做得更好:从识别猫,到辨别血液中癌症的早期成分,到识别核磁共振成像中的肿瘤。

Google的AlphaGo先是学会了如何下围棋,然后与它自己下棋训练。它训练自己神经网络的方法,就是不断地与自己下棋,反复地下,永不停歇。

| 深度学习,给人工智能以璀璨的未来深度学习使得机器学习能够实现众多的应用,并拓展了人工智能的领域范围。深度学习摧枯拉朽般地实现了各种任务,使得似乎所有的机器辅助功能都变为可能。

无人驾驶汽车,预防性医疗保健,甚至是更好的电影推荐,都近在眼前,或者即将实现。人工智能就在现在,就在明天。有了深度学习,人工智能甚至可以达到我们畅想的科幻小说一般。

你的C-3PO我拿走了,你有你的终结者就好了。

深度学习是不是一定就比机器学习好

1、机器学习是一种实现人工智能的方法,深度学习是一种实现机器学习的技术。2、深度学习本来并不是一种独立的学习方法,其本身也会用到有监督和无监督的学习方法来训练深度神经网络。

但由于近几年该领域发展迅猛,一些特有的学习手段相继被提出(如残差网络),因此越来越多的人将其单独看作一种学习的方法。

3、机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。

与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。

拓展资料:1、机器学习直接来源于早期的人工智能领域,传统的算法包括决策树、聚类、贝叶斯分类、支持向量机、EM、Adaboost等等。

从学习方法上来分,机器学习算法可以分为监督学习(如分类问题)、无监督学习(如聚类问题)、半监督学习、集成学习、深度学习和强化学习。

传统的机器学习算法在指纹识别、基于Haar的人脸检测、基于HoG特征的物体检测等领域的应用基本达到了商业化的要求或者特定场景的商业化水平,但每前进一步都异常艰难,直到深度学习算法的出现。

2、最初的深度学习是利用深度神经网络来解决特征表达的一种学习过程。深度神经网络本身并不是一个全新的概念,可大致理解为包含多个隐含层的神经网络结构。

为了提高深层神经网络的训练效果,人们对神经元的连接方法和激活函数等方面做出相应的调整。其实有不少想法早年间也曾有过,但由于当时训练数据量不足、计算能力落后,因此最终的效果不尽如人意。

深度学习摧枯拉朽般地实现了各种任务,使得似乎所有的机器辅助功能都变为可能。无人驾驶汽车,预防性医疗保健,甚至是更好的电影推荐,都近在眼前,或者即将实现。

人工智能、机器学习和深度学习的区别?

现在也是随着互联网的发展和壮大,人工智能的已经得到非常广泛的作用,还有就是人工智能的机器学习和深度学习已经吸引非常多的人前来学习,还有就是他的发展趋势还是非常的不错的。

人工智能从广义上讲,人工智能描述一种机器与周围世界交互的各种方式。通过先进的、像人类一样的智能——软件和硬件结合的结果——一台人工智能机器或设备就可以模仿人类的行为或像人一样执行任务。

机器学习机器学习是人工智能的一种途径或子集,它强调“学习”而不是计算机程序。一台机器使用复杂的算法来分析大量的数据,识别数据中的模式,并做出一个预测——不需要人在机器的软件中编写特定的指令。

在错误地将奶油泡芙当成橙子之后,系统的模式识别会随着时间的推移而不断改进,因为它会像人一样从错误中吸取教训并纠正自己。深度学习深度学习是机器学习的一个子集,推动计算机智能取得长足进步。

它用大量的数据和计算能力来模拟深度神经网络。从本质上说,这些网络模仿人类大脑的连通性,对数据集进行分类,并发现它们之间的相关性。如果有新学习的知识(无需人工干预),机器就可以将其见解应用于其他数据集。

机器处理的数据越多,它的预测就越准确。总结:人工智能是一类非常广泛的问题,机器学习是解决这类问题的一个重要手段。深度学习则是机器学习的一个分支。

在很多人工智能问题上,深度学习的方法突破了传统机器学习方法的瓶颈,推动了人工智能领域的发展。深度学习使得机器学习能够实现众多的应用,并拓展了人工智能的领域范围。

深度学习摧枯拉朽般地实现了各种任务,使得似乎所有的机器辅助功能都变为可能。无人驾驶汽车,预防性医疗保健,甚至是更好的电影推荐,都近在眼前,或者即将实现。

一篇文章讲清楚人工智能,机器学习和深度学习的区别

先看一下三者的关系:对于人工智能,我们可以从广义和狭义两个层面来理解。广义层面来讲,AI应该具备人类智力的所有特征,包括上述的能力。

狭义层面的人工智能则只具备部分人类智力某些方面的能力,并且能在这些领域内做的非常出众,但可能缺乏其他领域的能力。

比如说,一个人工智能机器可能拥有强大的图像识别功能,但除此之外并无他用,这就是狭义层面AI的例子。从核心上来说,机器学习是实现人工智能的一种途径。

实际上,机器学习是一种“训练”算法的方式,目的是使机器能够向算法传送大量的数据,并允许算法进行自我调整和改进,而不是利用具有特定指令的编码软件例程来完成指定的任务。

举个例子,机器学习已经被用于计算机视觉(机器具备识别图像或视频中的对象的能力)方面,并已经有了显著的进步。你可以收集数十万甚至数百万张图片,然后让人标记它们。例如,让人标记出其中含有猫的图片。

对于算法,它也能够尝试建立一个模型,可以像人一样准确地标记出含有猫的图片。一旦精度水平足够高,机器就相当于“掌握”了猫的样子。深度学习是机器学习的众多方法之一。

其他方法包括决策树学习、归纳逻辑编程、聚类、强化学习和贝叶斯网络等。深度学习的灵感来自大脑的结构和功能,即许多神经元的互连。人工神经网络(ANN)是模拟大脑生物结构的算法。

在ANN中,存在具有离散层和与其他“神经元”连接的“神经元”。每个图层挑选出一个要学习的特征,如图像识别中的曲线/边缘。

正是这种分层赋予了“深度学习”这样的名字,深度就是通过使用多层创建的,而不是单层。人工智能和物联网密不可分我认为人工智能和物联网之间的关系类似于人类的大脑和身体之间的关系。

我们的身体收集感官输入,如视觉、声音和触摸。我们的大脑接收、处理这些数据并寻求它们的意义,比如:把光变成可识别的对象、把声音变成可以理解的语言。

然后大脑会做出决定、向身体发送信号,命令身体执行一些运动,例如捡起物品或对他人说话。构成物联网的所有传感器都像我们的身体,它们提供了来自世界各处的原始数据。

人工智能就像我们的大脑,需要能够了解这些数据并决定要执行的操作。同时,物联网的连接设备又像是我们的身体,能够进行物理动作或与他人进行交流,以释放彼此的潜力。


http://chatgpt.dhexx.cn/article/vnF1Gl37.shtml

相关文章

贝叶斯网络系列学习

贝叶斯网络系列学习(1) 文章目录 贝叶斯网络系列学习(1)前言一、基础知识二、贝叶斯网络1.朴素贝叶斯1.2 朴素贝叶斯的分类 2.贝叶斯网络2.1 贝叶斯网络2.2 代码 总结参考文献 前言 最近一直在学习水下环境安全性态势评估&#x…

贝叶斯网络预测

贝叶斯网络预测 用于贝叶斯分类器的数据集 • 类标记c:playtennisyes,playtennisno, • 需计算P(yes),P(no) • 还需计算P(strong|yes),P(strong|no),P(high|yes),P(high|no),P(cool|yes),P(cool|no),P(sunny|yes),P(sunny|no)…

贝叶斯网络结构学习方法

文章目录 1. 完备数据的结构学习基于评分搜索定义评分函数基于贝叶斯统计的评分K2评分BD(Bayesian Dirichlet)评分BDeu(Bayesian Dirichlet eu)评分 基于信息理论的评分MDL评分函数AIC评分函数MIT评分函数 搜索方法K2算法爬山(hil…

贝叶斯网络简介

其实我们有些时候研究的随机变量并不是相互独立的,它可能是相互之间有关系的,也就是说若干个样本之间并不相互独立,可能产生了某种关系,最后就产生了一个看起来像网的东西,我们把这样的一个有向的无环图叫做贝叶斯网络…

Chapter 12 贝叶斯网络

1 概率公式 条件概率: 全概率公式: 贝叶斯公式(Bayes): 2 贝叶斯公式 2.1 贝叶斯公式带来的思考 给定某些样本,在这些样本中计算某结论出现的概率,即 贝叶斯公式 样本给定,则对于任何是常数&#…

静态贝叶斯网络

一、什么是静态贝叶斯网络? 研究和应用BN时,不考虑时间因素对系统和数据的影响。二、研究内容 计算复杂性 网络结构的确定问题 已知结构的参数确定问题 最大后验分布估计和条件期望估计。 在给定结构上的概率计算 贝叶斯网络推理算法&#xff1a…

【机器学习】11、贝叶斯网络

文章目录 一、贝叶斯网络是什么二、朴素贝叶斯三、贝叶斯网络的建立 一、贝叶斯网络是什么 贝叶斯网络的思考: 原本的问题: 给定一组样本D,求得在这些样本中出现某个结论 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1​,A2​,...,An​出现的…

机器学习:贝叶斯网络

一、什么是贝叶斯网络? 贝叶斯网络是一种用于进行概率推理的模型。(比如说下面这个图,箭头表示因果关系,也就是强盗抢劫和地震都会引起房子铃响,如果房子铃响,那么这个人的两个邻居John和mary会打电话给他…

人工智能学习(十):什么是贝叶斯网络——伯克利版

目录 10.1 概率建模 10.1.1 独立性 10.1.2 条件独立 10.1.2.1 条件独立和链式法则 10.2 贝叶斯网络 10.2.1 图形化的模型符号 10.2.2 贝叶斯网络的构建 10.2.3 贝叶斯网络的语义 10.2.3 贝叶斯网络中的概率 10.2.4 因果关系 10.1 概率建模 模型描述了世界的&#xff…

贝叶斯网络详解

0x01 贝叶斯网络概述 有时我们需要计算一个不确定原因的概率给出一些观察到的证据,在这些情况下可以使用贝叶斯方法。 贝叶斯网络(bayesian network) 是一种概率图形模型,它在图形模型中显式捕获已知的有向边的条件依赖性&#x…

【数据挖掘】贝叶斯网络理论及Python实现

1.理论知识 1.1贝叶斯网络概述 贝叶斯网络(Bayesian Network,BN)作为一种概率图模型(Probabilistic Graphical Model,PGD),可以通过有向无环图(Directed Acyclic Graph,DAG)来表现。…

Android init.rc中vold socket语法简介

一、 前言 本篇文章以Android4.4代码为例,简单说明init.rc中vold里面socket语法的使用。 二、语法简介 2.1 init.rc位置 init.rc文件位置:/system/core/rootdir/init.rc 2.2 vold代码块位置 service vold /system/bin/voldclass coresocket vold s…

Android 7.0 Vold工作流程

一、Vold工作机制 Vold是Volume Daemon的缩写,它是Android平台中外部存储系统的管控中心,是管理和控制Android平台外部存储设备的后台进程。其功能主要包括:SD卡的插拔事件检测、SD卡挂载、卸载、格式化等。 如上图所示,Vold中的…

1.9 深入理解Vold和Rild

第9章 深入理解Vold和Rild 9.1 概述 本章将分析Android系统中两个比较重要的程序,它们分别是: Vold:Volume Daemon,用于管理和控制Android平台外部存储设备的后台进程,这些管理和控制,包括SD卡的插拔事件…

Android之vold进程启动源码分析

1.Vold (Volume Daemon)介绍 vold进程接收来自内核的外部设备消息,用于管理和控制Android平台外部存储设备,包括SD插拨、挂载、卸载、格式化等;当外部设备发生变化时,内核通过Netlink发送uEvent格式的消息给…

<Android开发> Android vold - 第四篇 vold 的NetlinkHandler类简介

本系列主要介绍 Android vold,分为以下篇章 <Android开发> Android vold - 第一篇 vold前言简介 <Android开发> Android vold - 第二篇 vold 的main()函数简介 <Android开发> Android vold - 第…

<Android开发> Android vold - 第二篇 vold 的main()函数简介

本系列主要介绍 Android vold,分为以下篇章 <Android开发> Android vold - 第一篇 vold前言简介 <Android开发> Android vold - 第二篇 vold 的main()函数简介 <Android开发> Android vold - 第…

Android外部存储设备管理——vold挂载大容量存储设备

一、简介 Vold(volume Daemon),即Volume守护进程,用来管理Android中存储类(USB-Storage,包含U盘和SD卡)的热拔插事件,处于Kernel和Framework之间,是两个层级连接的桥梁。Vold在系统中以守护进程存在&#x…

Android Vold 架构简析

这篇文章中主要是分析一下,android系统里面的Vold——Vold是andorid系统的设备管理器,扮演着linux里面的udev的角色。它通过监听uevent的端口,取得 uevent事件,dispatch到 相应的Listener,执行相应的动作。 UEvent 在…

Android Vold架构

1. 总体架构 2. 流程概览 2.1 开启Vold 2.2 引导Uevent 2.3 处理事件 Vold - Volume Daemon存储类的守护进程,作为Android的一个本地服务,负责处理诸如SD、USB等存储类设备的插拔等事件。 1. 总体架构 Vold服务由volumeManager统一管控&#xff0c…