什么是卷积

article/2025/9/12 7:44:41

目录

  • 卷积是什么鬼
  • 卷积为什么这么牛
  • 卷积神经网络是个啥

卷积是什么鬼

卷积(convolution)
卷积: f ( t ) ∗ g ( t ) = ∫ f ( τ ) g ( τ ) d ( τ ) 卷积运算符号用 ∗ 号来表示 卷积:f(t)*g(t)=\int{f(τ)g(τ)d(τ)}\\ 卷积运算符号用*号来表示 卷积:f(t)g(t)=f(τ)g(τ)d(τ)卷积运算符号用号来表示
 卷积本质上还是运算,不过要比常见的加减乘除要高级的多,如果要用一句人话来讲:它用极简的数学形式,漂亮的描述了一个动态过程。

 这个过程用个一个故事来表达:假设有一列火车g(t)和一个山洞f(t)摆在摆在同一个数轴上,这时火车头和山洞入口都在最左侧,如果现在我们想要描述火车进山的过程,该怎么办。

image-20220918214241904

这是应该把火车旋转一下,让车头冲着山洞口,然后再一点点驶入山洞,这个过程才是卷积要解决的问题。

image-20220918214655133

 用数学语言来描述,把火车旋转就是把g(τ)变成g(-τ),这里我们用临时变量τ代替了原有的变量t,如此车身就被甩到了y轴左侧。
 然后配上全局变量t,得到g(t-τ),火车就可以运动起来了,乘积f(τ)乘以g(t-τ),表示火车进入山洞后每一时刻t两者相对的位置。
 积分也就是累加和,即记录了火车进入山洞后两者不断重叠、互相作用的过程。

image-20220918215515864

 现在把火车和山洞都简化为函数曲线,比如用红色的方波表示几何,黑色的曲线表示山洞\两个函数图像重叠的黄色区域面积,就是传说中的f(t)*g(t),有时也写成(f*g)(t)

image-20220918220154213

 两个函数f和g可以是各种弯弯曲曲的形式,但它们的卷积表示的都是一个函数转进另一个函数肚子里的动态过程

image-20220918220624867

 因为要从头部开始进去,所以要先进行函数旋转,这两个函数的角色其实是可以函数互换的,也就是说可以是火车进山洞,也可以是山洞套火车,这就是所谓的卷积交换性质

 卷积函数不仅可以连续的曲线,也可以是离散的形式如果用连续曲线选取采样点的视角来看两者本质上是一样的
f [ n ] ∗ g [ m ] = ∑ m = − ∞ ∞ f ( m ) g ( n − m ) f[n]*g[m]=\sum^{\infty}_{m=-\infty}f(m)g(n-m) f[n]g[m]=m=f(m)g(nm)
image-20220918223713902

卷积为什么这么牛

微积分: y = ∫ ( x − u ) n P ( x ) d x 微积分:y=\int{(x-u)^nP(x)dx} 微积分:y=(xu)nP(x)dx

 卷积的江湖地位不是一天形成的,数学天才欧拉早在18世纪研究微积分的时候就发现了这样一种能够将多种运算集于一身的有趣形式,但之后相当长的一段时间对它的关注还仅仅局限于数学界。
卷积定理: F [ f 1 ( t ) ∗ f 2 t ] = f 1 ( w ) ⋅ f 2 ( w ) 时域转频域 卷积定理:F[f_1(t)*f_2{t}]=f_1(w)\cdot f_2(w)\\时域转频域 卷积定理:F[f1(t)f2t]=f1(w)f2(w)时域转频域
 1821年,大神傅里叶正式提出卷积概念,并成功应用到物理领域,借助积分变换解决了信号处理中的时域与频域转换的难题,函数卷积的傅里叶变换等于函数傅里叶变换的乘积,这就是著名的卷积定理,在信号领域有着举足轻重的地位,可以说没有卷积就没有现在的5G、互联网。
y ( t ) = f ( t ) ∗ g ( t ) = ∫ f ( τ ) g ( t − τ ) d τ y(t)=f(t)*g(t)=\int{f(τ)g(t-τ)dτ} y(t)=f(t)g(t)=f(τ)g(tτ)dτ
 20世纪开始,卷积运算被越来越多的科学家为之着迷,其最牛掰之处就在于:简介的数学模型却能高度概括生活中的很多现象,因而成为工程科学领域冉冉升起的耀眼明星

通信领域
人们把卷积看成是将一种信号搬移到另外的一种频率当中,实现了调制功能

image-20220918225629333

物理领域
卷积可以代表系统对某个输入物理量进行影响或者是污染

image-20220918225757113

电路学
卷积是某种系统冲击函数对输入的相应,这类系统就是传说中的线行时不变系统

image-20220918230009729

信号处理
从信号的角度来看,卷积实际上就是对信号进行滤波,系统就是滤波器,过滤出我们感兴趣有价值的信息。

image-20220918230208945

图像处理
在图像处理领域卷积就像是一把好用的搓刀,被广泛应用于平滑、锐化、展宽等各种操作。

image-20220918230419420

不仅如此,自动控制、地震学和医学等许多新兴领域都能看到卷积婀娜的身姿。

如果卷积的牛掰之处到此也就罢了,谁知更恐怖的事情发生了。
 1998年,法国学者Yann LeCun将卷积运算与神经网络结合,提出了著名的卷积神经网络(Convolutional Neural Network)——CNN模型。
 伴随着21世纪海量互联网大数据和GPU等硬件设备的快速发展,深度卷积神经网络自2012年一炮而红,引领了十年间人工智能技术的再度崛起,在众多领域显示了超越人类的强大能力。

卷积神经网络是个啥

 卷积神经网络最早应用在计算机视觉里,我们现在耳熟能详的人脸识别、字符识别背后算法的核心都是CNN技术。

 卷积神经网络在把图片交给神经网络之前先要对图像进行一轮卷积的操作。

 我们知道,视频其实是一组图片以极快的速度交替呈现而出的,其中的每张图片叫做一帧,卷积神经网络就是应用在这样的一帧图像上的。

 计算机是如何处理图片的呢,我们看到的图片实际上是由RGB或者其它颜色模型下多种颜色图像叠加而成的,每种颜色由浅到深有分了0-255一共256个等级,如此一来,我们就可以把图片转化为数字矩阵

image-20220918232123206

 接下来为了提取图像的特征,我们会构建一个正方形的点阵,这个点阵就叫做卷积核,具体的操作过程是重合格子里的数字相乘然后再相加输出新的结果,从左上到右下逐个像素地遍历整个图像,就能得到新的矩阵了,这个过程用数学式子表达就是一个二维离散卷积操作。
y [ n 1 , n 2 ] = x [ n 1 , n 2 ] ∗ h [ n 1 , n 2 ] = ∑ m − ∞ ∞ ∑ m − ∞ ∞ x [ m 1 , m 2 ] ⋅ h [ n 1 − m 1 , n 2 − m 2 ] y[n_1,n_2]=x[n_1,n_2]*h[n_1,n_2]=\sum^{\infty}_{m-\infty}\sum^{\infty}_{m-\infty}x[m_1,m_2]\cdot h[n_1-m_1,n_2-m_2] y[n1,n2]=x[n1,n2]h[n1,n2]=mmx[m1,m2]h[n1m1,n2m2]
image-20220918232716725

 你可能会问原始图像遍历下来,原始图像边缘的像素点不就遍历不到了,这样每次生成新的矩阵就会比原始图像小一圈,为了解决这个问题,在卷积操作之前,一般会给原始图像外面补上一圈0,来保证输入输出维度一致,这个操作就是全零填充

image-20220918233040654

 前面讲卷积操作就是用一个输入乘上系统函数然后计算输出在图像处理中,输入就是原始图像的像素,系统函数就是卷积核,将这也是卷积神经网络得名的由来。
∑ ( 输入信号 f × 系统函数 g ) \sum{(输入信号f×系统函数g)} (输入信号f×系统函数g)
image-20220918233358115

 卷积的意义何在呢,直接来看不同类型的卷积核过滤之后的图像就好了。通过卷积操作能够提取出图像的特征,从而为之后的神经网络计算创造更好的条件,这里的卷积核也常常被叫做过滤器

image-20220918233742875

 伴随着人工智能技术的飞速发展,卷积现在已经几乎渗透进我们知道的每一个技术领域,发挥着越来越重要的作用。


http://chatgpt.dhexx.cn/article/mjk8bsFL.shtml

相关文章

二维卷积/矩阵卷积

二维卷积/矩阵卷积的计算方程 设有矩阵A和矩阵B,它们的卷积结果矩阵的元素可由下列公式计算得来: C(j,k)∑p∑qA(p,q)B(j−p1,k−q1) 其中的index只要在A,B中valid都要参与运算。 举例来说,令矩阵M为卷积核矩阵,矩阵…

如何计算矩阵的卷积

昨天立下flag,要开始学习深度学习,深度学习中十分重要的就是卷积神经网络,顾名思义,卷积神经网络中一定会用到卷积。喵哥在博友的一篇博文中看到卷积运算用于图像边缘检测的应用实例,博友十分细心的在截图上做了卷积的…

矩阵乘法实现卷积运算

1. 对于普通卷积运算,是使用滑动窗口实现卷积运算: 矩阵根据卷积核的大小进行,从左到右、从上到i下的移动,对应数据相乘再相加得到的数据为该区域的值。 ​​​​​​​ ​​​​​​​ 2.矩阵乘法实现卷积 原理:根据…

各种卷积操作及其矩阵运算

前言 简单来讲,卷积是一种函数和函数产生一个新函数的数学运算,该数学运算的自变量是两个函数f, g(连续或离散都可以,,定义域之外的部分记函数值填充为0),输出为一个函数h,满足 ,或者说,就是对…

矩阵卷积运算的具体过程

矩阵卷积运算的具体过程,很简单 最近在看图像处理,卷积运算这一块也查了很多,但是感觉都写的太复杂,我这里简单的写一下卷积到底是一个什么计算过程。 假设有一个卷积核h,就一般为3*3的矩阵: 有一个待处理…

矩阵卷积运算过程讲解

写了那么久的博客,始于Python爬虫,目前专于Java学习,终于有了属于自己的小窝,欢迎各位访问我的个人网站,未来我们一起交流进步。 在爬虫处理验证码的过程中接触到矩阵卷积运算,关于该类运算,记录…

矩阵的卷积以及使用python计算方法

1、离散⼆维卷积公式 其中A为被卷积矩阵,K为卷积核,B为卷积结果,该公式中,三个矩阵的排序均从0开始。 卷积核、滤波器通常为较小尺寸的矩阵,比如3333、5555等,数字图像是相对较大尺寸的2维(多…

矩阵卷积

1. 矩阵的卷积运算主要用在图像处理中,假设输入信号为x[m,n],激活响应为h[m,n],则其卷积定义为: 2.如果矩阵的中心在边缘就要将原矩阵进行扩展,例如补0 3.卷积的计算步骤: (1) 卷积核绕自己的核心…

隐马尔可夫模型(HMM)及Viterbi算法

HMM简介 对于算法爱好者来说,隐马尔可夫模型的大名那是如雷贯耳。那么,这个模型到底长什么样?具体的原理又是什么呢?有什么具体的应用场景呢?本文将会解答这些疑惑。   本文将通过具体形象的例子来引入该模型&#x…

viterbi算法实例及python实现

Python中hmmlearn给出了三种HMM模型:MultiomialHMM,GaussianHMM,GMMHMM。本文以MultiomialHMM为例,使用《从机器学习到深度学习》中第六章的活动/天气模型进行推算。 假设有这样一个问题,远在另一个城市上大学的儿子每天通过邮件向你汇报他今…

在HMM中实际应用Viterbi算法的例子

在HMM中实际应用Viterbi算法的例子 Viterbi概念动态规划使用HMM的Viterbi算法参考Viterbi概念 本质:动态规划算法 维特比算法是多步骤每步多选择模型的最优选择问题。 其在每一步的所有选择都保存了前续所有步骤到当前步骤当前选择的最小总代价(或者最大价值)以及当前代价…

HMM和viterbi算法初步实践-----中文分词

马尔科夫性质:当一个随机过程在给定现在状态及所有过去状态情况下,其未来状态的条件概率分布仅依赖于当前状态。换句话说,在给定现在状态时,它与过去状态(即该过程的历史路径)是条件独立的(也就是没有任何的…

HMM和Viterbi算法

一、隐马尔可夫模型(Hidden Markov Model) 1、简介 隐含马尔可夫模型并不是俄罗斯数学家马尔可夫发明的,而是美国数学家鲍姆提出的,隐含马尔可夫模型的训练方法(鲍姆-韦尔奇算法)也是以他名字命名的。隐含马…

基于Hmm模型和Viterbi算法的中文分词和词性标注

使用 python 实现基于Hmm模型和Viterbi算法的中文分词及词性标注;使用 最大概率算法 进行优化。最终效果:人民日报语料:分词(F1:96.189%);词性标注(F1:97.934%) 完整代码和数据,参见本实验的 github地址:h…

【生信算法】利用HMM纠正测序错误(Viterbi算法的python实现)

利用HMM纠正测序错误(Viterbi算法的python实现) 问题背景 对两个纯系个体M和Z的二倍体后代进行约~0.05x的低覆盖度测序,以期获得后代个体的基因型,即后代中哪些片段分别来源于M和Z。已知: 后代中基因型为MM、MZ&…

Viterbi算法实现中文分词和词性标注

Viterbi算法 目标过程词典分词统计分词词性标注 附录附录二附录三 源码地址 目标 实现基于词典的分词方法和统计分词方法对分词结果进行词性标注对分词及词性标注结果进行评价,包括4个指标:正确率、召回率、F1值和效率 过程 词典分词 基于词典的分词…

viterbi 算法与python实现

Viterbi算法 (部分内容转自知乎:《如何通俗地讲解 viterbi 算法?》) 1、问题描述 如下如所示,如何快速找到从 S 到 E 的最短路径? 一:遍历穷举法,可行,但速度太慢&am…

维特比算法(viterbi)原理以及简单实现

维特比算法 看一下维基百科的解释,维特比算法(Viterbi algorithm)是一种动态规划算法。它用于寻找最有可能产生观测事件序列的维特比路径——隐含状态序列,特别是在马尔可夫信息源上下文和隐马尔可夫模型中。 通俗易懂的解释知乎…

flask中jsonify遇到的坑

1.jsonify可以将字典转换成json对象传入前端 data {"movie": movie_list,"page": page,"dic_list": dic,"total_page": total_page}>>坑1 字典的值不能为range(x,x),上图dic就是像range(x,x),会报错 …

flask中的jsonify返回的是乱码

用flask返回json时遇到了返回字符串支持中文显示的问题,在web端显示的是utf-8的编码如图; 虽然不影响接口的读取,但是可读性太差,于是研究了一下怎么直接显示成中文。最后找到了解决方案如下,在配置中加入下面一行代码就OK了。 …