区分回归问题和分类问题

article/2025/9/26 22:45:37

回归问题和分类问题的区别

  • 回归问题
    用一个经典的问题来解释:假设你想买房子,手头上仅有的是之前出售的房子的占地面积大小和房子的价格,你想凭借手头上的这些数据来买一套不错的房子,那么你仅有的关于房子的信息是房子的占地大小,也就是就一个特征,那么这样的问题被称为单一特征回归问题。
    再假设一下,还是买房子,如果此时你手头上除了房子的占地大小这一个信息之外,还有房子邻街的距离、房子的高度、房子的周围的环境等等信息,你想凭借这些信息来选一套房子,那么此时你所拥有的是关于房子的多个特征,这样的问题是多特征回归问题。
    总结一下,除了特征的数量不同,这两种描述都是回归问题,回归问题的特点是你所预测的量是一个连续的值,比如这里是预测房屋价格,价格是一个连续的值。
  • 分类问题
    用一个简单的例子:西瓜的好坏。给定西瓜的若干特征,需要你根据这些特征来判断这个西瓜是好是坏。所给的特征可以是一个也可以是多个。
    分类问题的最大的特点是所预测的值是离散的,比如这里的西瓜的好坏,两种情况,不是好就是坏。再比如是否生病,不是生病就是不生病。当然这两个例子都是两种情况的分类问题即二分类,如果多分类问题呢?比如手写数字识别,就是多分类问题,对于一张照片传进来,只能判断是0~9之间的一个数字,其他的就不会预测。

说完两者的简单介绍以及区别之后,思考为什么多数线性回归不适合用在分类问题上(为了好理解我们拿线性假设函数来说明)?
比如下面的这个图:
在这里插入图片描述

是一个回归问题,因为因变量是一个连续的值,我们可以使用一条一线来拟合它。看看下面这张图:
在这里插入图片描述

假设它的横坐标的含义是肿瘤的大小,纵坐标代表是否有癌症,那么这样的问题是一个二分类问题,如果数据量不多,如这个图一样,用一条直线来拟合还说的过去,如果在x=30的地方有一个值,毫无疑问,很遗憾这位病人患了癌症,这个值能去掉吗?不能,它仍然有意义,这样的情况下如果还是用线性回归来拟合会很不适合。其实其他的例子也可以说明线性回归不适合用来预测分类问题。


http://chatgpt.dhexx.cn/article/khVb6ZTW.shtml

相关文章

LSTM回归问题

LSTM 解决回归问题时,出现了 model.predict() 输出的值几乎是常数值的问题,后来发现是因为数据没有标准化(归一化),导致 loss 不下降,也就是不收敛。后来加入了数据的标准化之后,就可以拟合了。…

数据分析——随机森林解决回归问题

下表为训练数据集,特征向量只有一维,根据此数据表建立回归决策树。 在本数据集中,只有一个特征变量,最优切分变量自然是x。接下来考虑9个切分点{1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5,9.5},根据下式计算每个待切分点的损失…

处理回归问题常见的算法

7.处理回归问题常见的算法: 回归属于有监督学习的一种,其从连续的统计数据中的到数学模型,然后使用生成的模型用于预测和分类。线性回归:给定数据集,其中线性回归模型通过对数据集的学习生成一个线性模型,…

深度学习 分类问题与回归问题

分类问题与回归问题 分类与回归 一、分类问题1.1分类性能度量:(1)准确率(accuracy)*(2)精确率(percision)*(3)召回率(recall&#xff…

Python实现---用KNN解决回归问题

KNN用于回归问题 KNN不仅可以用于分类问题,也可以用回归问题。 主要算法思路就是:使用KNN计算某个数据点的预测值时,模型从训练数据集中选择离该数据点最近的k个数据点,并且把这些数据的y值取均值,把求出的这个均值作…

神经网络:DNN回归问题

2020_11_01 DNN Regression 参考资料:《Python深度学习》 Francois Choll 神经网络可以主要解决三大类问题:二分类、多分类、回归。 回归问题特点在于结果是连续值,因此调参过程也与分类问题相异。 在了解DNN回归问题后,我们…

机器学习实战(二)使用LightGBM的回归问题模型搭建

目录 1.导入所用的数据包 2.导入模型建立所需要的数据 3.数据集划分 4.导入训练包与交叉验证包(LGBM) 5.模型训练 6.模型验证及画图 7.画图展示模型验证情况 8.特征重要性分析 数据集链接 S. Thai, H. Thai, B. Uy, T. Ngo, M. Naser, Test Data…

Keras深度学习(4)-回归问题之预测房价

在深度学习的任务中,回归问题也是一个常见的任务。 本文将要预测 20 世纪 70 年代中期波士顿郊区房屋价格的中位数,已知当时郊区的一些数据点,比如犯罪率、当地房产税率等。本节用到的数据集与前面两个例子有一个有趣的区别。它包含的数据点相…

『迷你教程』绝对能看懂的分类问题和回归问题白话版

文章目录 内容介绍函数近似分类预测建模回归预测建模分类与回归在分类和回归问题之间转换 内容介绍 老生常谈的话题分类问题和回归问题之间有一个重要的区别。从根本上说,分类是关于预测标签,回归是关于预测数量。 我经常看到这样的问题: 如…

各类回归问题总结

回归问题的条件/前提: 1) 收集的数据 2) 假设的模型,即一个函数,这个函数里含有未知的参数,通过学习,可以估计出参数。然后利用这个模型去预测/分类新的数据。 1. 线性回归 假设 特征 和 结果…

回归问题的评价指标和重要知识点总结

回归分析为许多机器学习算法提供了坚实的基础。在这篇文章中,我们将总结 10 个重要的回归问题和5个重要的回归问题的评价指标。 1、线性回归的假设是什么? 线性回归有四个假设 线性:自变量(x)和因变量(y…

深度学习3:回归问题

首先不要将回归问题和logistic回归算法混为一谈,logistic回归不是回归算法,而是分类算法。 之前的分类问题的目标是预测输入数据点所对应的单一离散的标签,而这节要预测一个连续的而不是离散的标签,比如根据气象数据预测明天的气温…

回归问题评价指标

目录 平均绝对值误差(MAE) 均方误差(MSE) 均方根误差(RMSE) 平均绝对百分比误差(MAPE) 均方误差对数(MSLE) 中位绝对误差(MedAE) R Squared 总结 回归模型: 个样本,每个样本…

stacking集成模型预测回归问题

前言 关于各种集成模型,已经有很多文章做了详细的原理介绍。本文不再赘述stacking的原理,直接通过一个案例,使用stacking集成模型预测回归问题。 本文通过学习一篇stacking继承学习预测分类问题,对其代码进行了调整,以…

逻辑回归问题汇总

文章目录 1. Logistic回归与线性回归的区别与联系?2. Logistic回归有哪些基本假设?3. Logistic回归的损失函数?4. Logistic回归损失函数的求解方法?5. Logistic回归是如何进行分类的?6. Logistic回归为什么要用极大似然函数作为损失函数?7. 为什么在…

回归问题归一化总结

在用深度学习做回归问题时,对数据进行标准化处理是一个共识,将数据标准化,利用标准化后得数据进行数据分析。不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响…

分类和回归问题

前言 最近在复习一些深度学习和机器学习的基础知识,看到分类和回归,这里记录一下。 一、回归 首先,回归应用的场景是用来输出一系列连续的值,然后用于预测等任务。回归的目的是为了找到最优拟合的曲线,这个曲线可以…

回归问题一般解决方法

1. 回归问题 Given a labeled training set learn a general mapping which associates previously unseen independent test data with their correct continuous prediction. 回归问题和分类问题很相似,区别在于回归问题的输出是一个连续值。 上图是训练数据 和 对应的连续值…

对线性回归、逻辑回归、各种回归的概念学习

回归问题的条件/前提: 1) 收集的数据 2) 假设的模型,即一个函数,这个函数里含有未知的参数,通过学习,可以估计出参数。然后利用这个模型去预测/分类新的数据。 1. 线性回归 假设 特征 和 结果 都满足线性。即不大于一次方。这个是针对 收集的数据而言。 收集的数据中…

回归问题

回归 回归(regression) 是监督学习的另一个重要问题。 回归用于预测输入变量(自变量) 和输出变量(因变量) 之间的关系, 特别是当输入变量的值发生变化时, 输出变量的值随之发生的…