C语言推荐书籍从入门到进阶带你走上大牛之路(珍藏版)

article/2025/9/26 19:03:56

首先是关于学习技术书籍的一些心得,很多人给我留言说看不下去书,想看视频学习,我不反对看视频学习,但是编程作为一门需要不断钻研的技术,只靠看视频是注定不可能成为专家的,还是得从经典的书籍中汲取知识,再加上工作中不断实践探索才是正道,总体来看,这样的效率才是最高的。

学习交流可以添加

微信读者交流①群 (添加微信:coderAllen)
程序员技术QQ交流①群:736386324


在这里插入图片描述


书籍介绍

一.C语言入门,初学,编程基础系列

1.《C语言程序设计:现代方法》(第2版)


http://chatgpt.dhexx.cn/article/YRfYfDBQ.shtml

相关文章

C语言入门学习和书籍推荐

转载自《C語言入門學習和書籍推薦》 1、C语言适合当第一门编程语言学习 ①、C语言语法相对简单,但又比较完整和严谨,包含该有的各种元素。学完C语言语法,要学习其它编程语言就很容易了。 ②、C语言接近底层,可以了解内存和计算…

学习C语言的必备书籍-从入门到精通

学习好并精通C语言是成为优秀程序员的首要要求,在这里推荐一些学习C语言从小白到高手的必看书籍。 也是我几年来收集的一些精华本。 入门: 1、大学C语言教材 不同学校教材不通,大部分书都把C语言的基本内容讲出来了,不推荐谭浩强…

C语言书籍推荐从入门到进阶再到封神全套(2021年整理)

一、C语言书籍推荐入门,初学,编程基础系列 1、《C语言程序设计:现代方法》(第2版) 时至今日, C语言仍然是计算机领域的通用语言之一,但今天的 C语言已经和最初的时候大不相同了。本书最主要的…

C语言从入门到精通所需的7本书

1. C Primer Plus ![image.png](http://upload-images.jianshu.io/upload_images/1956008-f959cc5bbec7f36f.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240) C Primer Plus作为一本被人推崇备至的c入门经典,C primer plus绝非浪得虚名。应该算得上C教材…

适合C语言学习的书籍推荐 | 初学者必备

C语言作为学编程最好的入门语言,对一个初进程序大门的小白来说是很有帮助的,学习编程能培养一个人的逻辑思维,而C语言则是公认的最符合人们对程序的认知的一款计算机语言,很多大学都选择了使用C语言作为大学生编程的启蒙语言。 然…

矩阵的SVD分解(理论到计算结果)

为什么要用到SVD分解? 从特征值和特征向量说起: 首先回顾下特征值和特征向量的定义:其中A是一个m*m的实对称矩阵,x是一个m维向量,则我们说λ是矩阵A的一个特征值,而x是矩阵A的特征值λ所对应的特征向量。 求出特征值和特征向量有什么好处呢? 就是我们可以将矩阵A特征…

SVD分解及其应用

SVD起源 对角化概述 SVDSVD应用 图像压缩2数据去噪LSA推荐系统 注意参考资料 SVD可谓线性代数的登峰造极者。 其本质就是找到将任何一个矩阵对角化分解的两组标准正交的基底,同时对应的奇异值反映了对应基底变换的性质,为0表示对应的维度缺少信息&#…

机器学习 - SVD分解算法的物理意义

机器学习-SVD分解算法的物理意义 奇异值分解(Singular Value Decomposition),以下简称SVD。 奇异值分解算法是一种在机器学习中经常使用到的一个算法,SVD主要用于数据压缩和数据降维,在图像压缩、推荐系统有着极其重…

SVD分解的理解

原文地址:http://www.bfcat.com/index.PHP/2012/03/svd-tutorial/ SVD分解(奇异值分解),本应是本科生就掌握的方法,然而却经常被忽视。实际上,SVD分解不但很直观,而且极其有用。SVD分解提供了一…

矩阵的 SVD 分解方法,几何意义

转自: https://liam.page/2017/11/22/SVD-for-Human-Beings/ 更多信息请读者移步原文阅读。 推荐中国台湾周志成老师的线性代数博客 https://ccjou.wordpress.com/ 以及书籍《矩阵分析及应用》-- 张贤达 还可参考: https://www.cnblogs.com/endlesscodin…

SVD分解(奇异值分解)求旋转矩阵

参考文献:http://igl.ethz.ch/projects/ARAP/svd_rot.pdf 一 问题描述 假设P{p1,p2,...,pn}和Q{q1,q2,...,qn}是两组Rd空间中的对应点集,现在想要根据这个两个点集的数据来计算出它们之间的刚性转置信息,可以知道这其实是一个最小二乘求优问题…

详解SVD(奇异值分解)

1、特征值分解(EVD) 实对称矩阵 在理角奇异值分解之前,需要先回顾一下特征值分解,如果矩阵是一个的实对称矩阵(即),那么它可以被分解成如下的形式 其中为标准正交阵,即有&#xff…

SVD分解原理及基于SVD分解的图像压缩和去噪

SVD分解是矩阵论中的一个知识点,特征值分解可以得到特征值与特征向量,特征值表示的是这个特征到底有多重要,而特征向量表示这个特征是什么,可以将每一个特征向量理解为一个线性的子空间,我们可以利用这些线性的子空间干…

矩阵分解SVD

《矩阵分解SVD》   本来是做了一个MobileNetV2中的关于ReLU的一个实验,大体用到的知识是对一个 n ∗ 2 n*2 n∗2 的矩阵通过 2 ∗ m 2*m 2∗m 的随机矩阵映射到 n ∗ m n*m n∗m ,经过ReLU函数后再映射回 n ∗ 2 n*2 n∗2 ,那么就需要…

t-svd张量分解算法详解

t-svd张量分解算法详解 讲解论文所需基础知识背景知识介绍什么是svd分解?定义1:svd分解 什么是张量? t-svd分解详解正式定义t-svd!疑惑问题解惑前需要学习的定义:定义2.1:张量t积 疑惑解答: 讲解…

【机器学习中的矩阵分解】LU分解、QR分解、SVD分解

学习总结 文章目录 学习总结一、三角分解(LU分解)1.1 高斯消元1.2 LU分解原理1.3 LU分解python代码1.4 LU分解算法 二、QR分解2.1 Schmid 正交化2.2 使用 Schmid 施密特正交化过程求 QR 分解2.3 QR分解的栗子 三、SVD分解3.1 SVD定义3.2 SVD基本理论&…

【六】SVD分解

SVD分解在很多经典应用中都有用到,比如数据压缩,降噪等,PCA也和SVD有着紧密联系,这里记录自己关于SVD分解求解最小二乘解的学习笔记,若有错误请指出,谢谢。 在实践中,由于存在测量误差和多次测…

SVD分解原理详解

在介绍SVD之前,先补充一些基础知识 1.酉矩阵: 2.正规(正定)矩阵 3.谱分解: 表示正规矩阵,可经由酉变换,分解为对角矩阵;这种矩阵分解的方式,称为谱分解(spec…

矩阵分解(四)——SVD分解

目录 矩阵相关术语共轭矩阵(Hermite阵)特征值相似矩阵A^H^A^H^A酉矩阵酉相抵(正交相抵)奇异值奇异值分解式特征分解 奇异值分解python代码实现验证结果 np.linalg.svd 利用Python进行SVD分解对图像压缩 矩阵相关术语 共轭矩阵&am…

聊聊特征分解和SVD分解

矩阵分解 矩阵分解(decomposition,factorization):将矩阵拆分为多个矩阵的乘积的运算。矩阵的分解包括以下几种: 特征分解SVD分解PCAQR分解LU分解极分解 矩阵分解在数据压缩、推荐系统以及NLP等都有着比较广泛的应用。 特征分解 特征分解(eigendeco…