矩阵的SVD分解(理论到计算结果)

article/2025/9/26 19:00:45

为什么要用到SVD分解?

从特征值和特征向量说起:

首先回顾下特征值和特征向量的定义:A_{m\times m}x=\lambda x其中A是一个m*m的实对称矩阵,x是一个m维向量,则我们说λ是矩阵A的一个特征值,而x是矩阵A的特征值λ所对应的特征向量。

求出特征值和特征向量有什么好处呢? 就是我们可以将矩阵A特征分解。假设我们已经求出了矩阵A的m个特征值:\lambda _{1}\geq \lambda _{2}\geq ...... \lambda _{m},以及这m个特征值所对应的特征向量(\rho _{1},\rho _{2}, ... \rho _{m})。若这m个特征向量线性无关,那么矩阵A就可以用下式的特征分解表示:


http://chatgpt.dhexx.cn/article/R4r9bsEl.shtml

相关文章

SVD分解及其应用

SVD起源 对角化概述 SVDSVD应用 图像压缩2数据去噪LSA推荐系统 注意参考资料 SVD可谓线性代数的登峰造极者。 其本质就是找到将任何一个矩阵对角化分解的两组标准正交的基底,同时对应的奇异值反映了对应基底变换的性质,为0表示对应的维度缺少信息&#…

机器学习 - SVD分解算法的物理意义

机器学习-SVD分解算法的物理意义 奇异值分解(Singular Value Decomposition),以下简称SVD。 奇异值分解算法是一种在机器学习中经常使用到的一个算法,SVD主要用于数据压缩和数据降维,在图像压缩、推荐系统有着极其重…

SVD分解的理解

原文地址:http://www.bfcat.com/index.PHP/2012/03/svd-tutorial/ SVD分解(奇异值分解),本应是本科生就掌握的方法,然而却经常被忽视。实际上,SVD分解不但很直观,而且极其有用。SVD分解提供了一…

矩阵的 SVD 分解方法,几何意义

转自: https://liam.page/2017/11/22/SVD-for-Human-Beings/ 更多信息请读者移步原文阅读。 推荐中国台湾周志成老师的线性代数博客 https://ccjou.wordpress.com/ 以及书籍《矩阵分析及应用》-- 张贤达 还可参考: https://www.cnblogs.com/endlesscodin…

SVD分解(奇异值分解)求旋转矩阵

参考文献:http://igl.ethz.ch/projects/ARAP/svd_rot.pdf 一 问题描述 假设P{p1,p2,...,pn}和Q{q1,q2,...,qn}是两组Rd空间中的对应点集,现在想要根据这个两个点集的数据来计算出它们之间的刚性转置信息,可以知道这其实是一个最小二乘求优问题…

详解SVD(奇异值分解)

1、特征值分解(EVD) 实对称矩阵 在理角奇异值分解之前,需要先回顾一下特征值分解,如果矩阵是一个的实对称矩阵(即),那么它可以被分解成如下的形式 其中为标准正交阵,即有&#xff…

SVD分解原理及基于SVD分解的图像压缩和去噪

SVD分解是矩阵论中的一个知识点,特征值分解可以得到特征值与特征向量,特征值表示的是这个特征到底有多重要,而特征向量表示这个特征是什么,可以将每一个特征向量理解为一个线性的子空间,我们可以利用这些线性的子空间干…

矩阵分解SVD

《矩阵分解SVD》   本来是做了一个MobileNetV2中的关于ReLU的一个实验,大体用到的知识是对一个 n ∗ 2 n*2 n∗2 的矩阵通过 2 ∗ m 2*m 2∗m 的随机矩阵映射到 n ∗ m n*m n∗m ,经过ReLU函数后再映射回 n ∗ 2 n*2 n∗2 ,那么就需要…

t-svd张量分解算法详解

t-svd张量分解算法详解 讲解论文所需基础知识背景知识介绍什么是svd分解?定义1:svd分解 什么是张量? t-svd分解详解正式定义t-svd!疑惑问题解惑前需要学习的定义:定义2.1:张量t积 疑惑解答: 讲解…

【机器学习中的矩阵分解】LU分解、QR分解、SVD分解

学习总结 文章目录 学习总结一、三角分解(LU分解)1.1 高斯消元1.2 LU分解原理1.3 LU分解python代码1.4 LU分解算法 二、QR分解2.1 Schmid 正交化2.2 使用 Schmid 施密特正交化过程求 QR 分解2.3 QR分解的栗子 三、SVD分解3.1 SVD定义3.2 SVD基本理论&…

【六】SVD分解

SVD分解在很多经典应用中都有用到,比如数据压缩,降噪等,PCA也和SVD有着紧密联系,这里记录自己关于SVD分解求解最小二乘解的学习笔记,若有错误请指出,谢谢。 在实践中,由于存在测量误差和多次测…

SVD分解原理详解

在介绍SVD之前,先补充一些基础知识 1.酉矩阵: 2.正规(正定)矩阵 3.谱分解: 表示正规矩阵,可经由酉变换,分解为对角矩阵;这种矩阵分解的方式,称为谱分解(spec…

矩阵分解(四)——SVD分解

目录 矩阵相关术语共轭矩阵(Hermite阵)特征值相似矩阵A^H^A^H^A酉矩阵酉相抵(正交相抵)奇异值奇异值分解式特征分解 奇异值分解python代码实现验证结果 np.linalg.svd 利用Python进行SVD分解对图像压缩 矩阵相关术语 共轭矩阵&am…

聊聊特征分解和SVD分解

矩阵分解 矩阵分解(decomposition,factorization):将矩阵拆分为多个矩阵的乘积的运算。矩阵的分解包括以下几种: 特征分解SVD分解PCAQR分解LU分解极分解 矩阵分解在数据压缩、推荐系统以及NLP等都有着比较广泛的应用。 特征分解 特征分解(eigendeco…

SVD奇异值分解

SVD分解 SVD分解是LSA的数学基础,本文是我的LSA学习笔记的一部分,之所以单独拿出来,是因为SVD可以说是LSA的基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文章。本节讨论SVD分解相关数学问题&#xf…

矩阵分解 SVD分解

在认识SVD之前,先来学习两个相关的概念:正交矩阵和酉矩阵。 如果,则阶实矩阵称为正交矩阵。而酉矩阵是正交矩阵往复数域上的推广。 判断正交矩阵和酉矩阵的充分必要条件是:。或者说正交矩阵和酉矩阵的共轭转置和它的 …

SVD分解的推导,理解SVD分解及矩阵奇异值的几何意义

文章目录 SVD分解的证明推导从本质上理解SVD分解矩阵奇异值的几何意义 SVD分解的证明推导 理解SVD分解要解决的问题是什么? 从本质上理解SVD分解 从线性映射的矩阵表示角度,即从“抽象”->“具体”的角度去理解SVD分解。 矩阵奇异值的几何意义…

矩阵分解SVD原理

常用的经典矩阵分解算法: 经典算法PCA、SVD主题模型算法LDA概率矩阵分解PMF,由深度学习大牛Ruslan Salakhutdinov所写,主要应用于推荐系统中,在大规模的稀疏不平衡性Netflix数据集上取得较好的效果;非负矩阵分解&#…

精简易懂,30 分钟学会 SVD 矩阵分解,很强!

点击上方“小白学视觉”,选择加"星标"或“置顶” 重磅干货,第一时间送达SVD(Singular Value Decomposition)奇异值分解分解是机器学习中最重要的矩阵分解方法。 它能够将一个任意形状的矩阵分解成一个正交矩阵和一个对角矩阵以及另一个正交矩阵…

矩阵(一):SVD分解

文章目录 0 参考链接(尊重原著)1 SVD分解原理2 SVD分解意义3 SVD分解的应用4 SVD数学举例5 为什么Ax0的解为最小奇异值对应的向量? 0 参考链接(尊重原著) 下面这个讲的很好很全面 视觉SLAM常见的QR分解SVD分解等矩阵分…