SVD奇异值分解

article/2025/9/26 21:41:12

SVD分解

SVD分解是LSA的数学基础,本文是我的LSA学习笔记的一部分,之所以单独拿出来,是因为SVD可以说是LSA的基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文章。本节讨论SVD分解相关数学问题,一个分为3个部分,第一部分讨论线性代数中的一些基础知识,第二部分讨论SVD矩阵分解,第三部分讨论低阶近似。本节讨论的矩阵都是实数矩阵。

基础知识

1. 矩阵的秩:矩阵的秩是矩阵中线性无关的行或列的个数

2. 对角矩阵:对角矩阵是除对角线外所有元素都为零的方阵

3. 单位矩阵:如果对角矩阵中所有对角线上的元素都为零,该矩阵称为单位矩阵

4. 特征值:对一个M x M矩阵C和向量X,如果存在λ使得下式成立

2 

则称λ为矩阵C的特征值,X称为矩阵的特征向量。非零特征值的个数小于等于矩阵的秩。

5. 特征值和矩阵的关系:考虑以下矩阵

clip_image004

该矩阵特征值λ1 = 30,λ2 = 20,λ3 = 1。对应的特征向量

clip_image006

假设VT=(2,4,6) 计算S x VT

clip_image008

clip_image010

有上面计算结果可以看出,矩阵与向量相乘的结果与特征值,特征向量有关。观察三个特征值λ1 = 30,λ2 = 20,λ3 = 1,λ3值最小,对计算结果的影响也最小,如果忽略λ3,那么运算结果就相当于从(60,80,6)转变为(60,80,0),这两个向量十分相近。这也表示了数值小的特征值对矩阵-向量相乘的结果贡献小,影响小。这也是后面谈到的低阶近似的数学基础。

矩阵分解

1. 方阵的分解

1) 设S是M x M方阵,则存在以下矩阵分解

clip_image012

其中U 的列为S的特征向量,clip_image014为对角矩阵,其中对角线上的值为S的特征值,按从大到小排列:

clip_image016

2) 设S是M x M 方阵,并且是对称矩阵,有M个特征向量。则存在以下分解

clip_image018

其中Q的列为矩阵S的单位正交特征向量,clip_image014[1]仍表示对角矩阵,其中对角线上的值为S的特征值,按从大到小排列。最后,QT=Q-1,因为正交矩阵的逆等于其转置。

2. 奇异值分解

上面讨论了方阵的分解,但是在LSA中,我们是要对Term-Document矩阵进行分解,很显然这个矩阵不是方阵。这时需要奇异值分解对Term-Document进行分解。奇异值分解的推理使用到了上面所讲的方阵的分解。

假设C是M x N矩阵,U是M x M矩阵,其中U的列为CCT的正交特征向量,V为N x N矩阵,其中V的列为CTC的正交特征向量,再假设r为C矩阵的秩,则存在奇异值分解:

clip_image020

其中CCT和CTC的特征值相同,为clip_image022

Σ为M X N,其中clip_image024clip_image026,其余位置数值为0,clip_image028的值按大小降序排列。以下是Σ的完整数学定义:

clip_image030

σi称为矩阵C的奇异值。

用C乘以其转置矩阵CT得:

clip_image032

上式正是在上节中讨论过的对称矩阵的分解。

奇异值分解的图形表示:

clip_image034

从图中可以看到Σ虽然为M x N矩阵,但从第N+1行到M行全为零,因此可以表示成N x N矩阵,又由于右式为矩阵相乘,因此U可以表示为M x N矩阵,VT可以表示为N x N矩阵

3. 低阶近似

LSA潜在语义分析中,低阶近似是为了使用低维的矩阵来表示一个高维的矩阵,并使两者之差尽可能的小。本节主要讨论低阶近似和F-范数。

给定一个M x N矩阵C(其秩为r)和正整数k,我们希望找到一个M x N矩阵Ck,其秩不大于K。设X为C与Ck之间的差,X=C – Ck,X的F-范数为

clip_image036

当k远小于r时,称Ck为C的低阶近似,其中X也就是两矩阵之差的F范数要尽可能的小。

SVD可以被用与求低阶近似问题,步骤如下:

1. 给定一个矩阵C,对其奇异值分解:clip_image038

2. 构造clip_image040,它是将clip_image042的第k+1行至M行设为零,也就是把clip_image042[1]的最小的r-k个(the r-k smallest)奇异值设为零。

3. 计算Ckclip_image044

回忆在基础知识一节里曾经讲过,特征值数值的大小对矩阵-向量相乘影响的大小成正比,而奇异值和特征值也是正比关系,因此这里选取数值最小的r-k个特征值设为零合乎情理,即我们所希望的C-Ck尽可能的小。完整的证明可以在Introduction to Information Retrieval[2]中找到。

我们现在也清楚了LSA的基本思路:LSA希望通过降低传统向量空间的维度来去除空间中的“噪音”,而降维可以通过SVD实现,因此首先对Term-Document矩阵进行SVD分解,然后降维并构造语义空间。



http://chatgpt.dhexx.cn/article/8ReHZlGg.shtml

相关文章

矩阵分解 SVD分解

在认识SVD之前,先来学习两个相关的概念:正交矩阵和酉矩阵。 如果,则阶实矩阵称为正交矩阵。而酉矩阵是正交矩阵往复数域上的推广。 判断正交矩阵和酉矩阵的充分必要条件是:。或者说正交矩阵和酉矩阵的共轭转置和它的 …

SVD分解的推导,理解SVD分解及矩阵奇异值的几何意义

文章目录 SVD分解的证明推导从本质上理解SVD分解矩阵奇异值的几何意义 SVD分解的证明推导 理解SVD分解要解决的问题是什么? 从本质上理解SVD分解 从线性映射的矩阵表示角度,即从“抽象”->“具体”的角度去理解SVD分解。 矩阵奇异值的几何意义…

矩阵分解SVD原理

常用的经典矩阵分解算法: 经典算法PCA、SVD主题模型算法LDA概率矩阵分解PMF,由深度学习大牛Ruslan Salakhutdinov所写,主要应用于推荐系统中,在大规模的稀疏不平衡性Netflix数据集上取得较好的效果;非负矩阵分解&#…

精简易懂,30 分钟学会 SVD 矩阵分解,很强!

点击上方“小白学视觉”,选择加"星标"或“置顶” 重磅干货,第一时间送达SVD(Singular Value Decomposition)奇异值分解分解是机器学习中最重要的矩阵分解方法。 它能够将一个任意形状的矩阵分解成一个正交矩阵和一个对角矩阵以及另一个正交矩阵…

矩阵(一):SVD分解

文章目录 0 参考链接(尊重原著)1 SVD分解原理2 SVD分解意义3 SVD分解的应用4 SVD数学举例5 为什么Ax0的解为最小奇异值对应的向量? 0 参考链接(尊重原著) 下面这个讲的很好很全面 视觉SLAM常见的QR分解SVD分解等矩阵分…

详解SVD分解过程

转 如何让奇异值分解(SVD)变得不“奇异”? 红色石头 发布于 2018-08-29 分类:机器学习 阅读(144) 评论(0) 如何让奇异值分解(SVD)变得不“奇异”?-红色石头的个人博客 http://redstonewill.com/1529/ 在之前的一篇文章:通俗解…

奇异值分解(SVD)原理详解及推导

转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系。前段时间看了国外的一篇文章,叫A S…

奇异值分解(SVD)原理

奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。是很多机器学习算法的基石。本文就对SVD的原理做一个总…

SVD(奇异值分解)

一、SVD(奇异值分解 Singular Value Decomposition) 1.1、基本概念: (1)定义:提取信息的方法:奇异值分解Singular Value Decomposition(SVD) (2&#xff0…

SVD分解

一、SVD简介 Singular Value Decomposition(奇异值分解,SVD)是一种重要的矩阵分解技术,可以将一个矩阵分解为三个矩阵的乘积。SVD的应用广泛,包括数据降维、矩阵逆运算、推荐系统等领域。 给定一个矩阵A,SV…

如何快速搭建个人网站(服务器配置篇)

关于服务器的购买和域名注册可以参考我的这篇博客 在使用之前,建议小白用户先下载一个Vmware 安装一个Ubuntu的虚拟环境学习一下linux的基础命令。 一、远程服务器的连接 服务器购买好了以后我们需要进行远程连接我们的服务器, 我个人推荐windows用…

在废旧手机里搭建个人服务器

点击跳转微信公众号原文链接 欢迎关注公众号,会不定时发些有趣的干货文章,以及一些记录性的技术文章! 正文开始: 一、目的:给手机装上Linux系统,充当服务器使用 二、流程: 1、手机装好相关软件…

个人搭建网站的服务器选择

关于这方面之前一直准备分享一下心得,由于一直比较忙,各种想写的就各种耽搁了,今天给大家总结一下个人或小型企业站该如何选择网站服务器 首先,先弄清楚自己的需求和用途: 1、是建立一个静态页面还是动态页面&#xff…

如何利用云服务器搭建个人网站

去阿里云进入官网 aliyun.com 注册账号 小林同学在这里用阿里云演示,大家也可以去腾讯云、百度云注册等大型知名企业,步骤雷同,看个人喜欢 注册完,完善个人信息,进行实名认证 主页面 点击 最新活动 并找到 新手上路 和…

【Linux】零成本在家搭建自己的私人服务器解决方案

我这个人自小时候以来就特喜欢永久且免费的东西,也因此被骗过(花巨款买了永久超级会员最后就十几天)。 长大后骨子里也是喜欢永久且免费的东西,所以我不买服务器,用GitHubPage或者GiteePage搭建自己的静态私人博客&…

如何组装、搭建一台永久运行的个人服务器?

点击关注公众号,实用技术文章及时了解 来源:segmentfault.com/a/1190000021143144 一、前言 由于本人在这段时候,看到了一个叫做树莓派的东东,初步了解之后觉得很有意思,于是想把整个过程记录下来。 二、树莓派是什么&…

完全免费快速搭建个人www服务器

想拥有自己的web服务器吗?想把服务器放到自己家里吗?通过ADSL拨号也能建立个人的服务器吗?本文告诉你答案。 要建立自己的web服务器,需要两个最重要的工作: 1 让别人知道你的主机 目前访问Internet上主机的方式主要有…

用服务器建立个人网站

首先,我们需要购买云服务器和域名。 域名建议用.com后缀的(一般五十左右),想要便宜的域名可以买.top等后缀的(一般几块钱)。 点击这里购买域名 三丰云服务器的话,根据自己的需要购买&#xf…

家庭宽带搭建个人服务器

家庭宽带搭建个人服务器 家庭宽带搭建个人服务器准备1.公网IP1.1光猫改桥接模式 2.一台PC主机 安装PVE系统1.下载PVE镜像文件2.制作U盘启动盘 PVE安装Centos1.创建虚拟机2.启动虚拟机 完成centos安装步骤即可 域名解析实现公网访问1.测试公网连接 家庭宽带搭建个人服务器 想必…

家用宽带搭建个人服务器(一)

本文主要详记从 安装电信宽带 到使用动态公网IP 访问家里电脑的 web服务 写在前头 以前不知道在哪看过家用宽带搭建个人网站这种文章,所以心里一直对这个事念念不忘,毕竟万物皆可薅,能免费就免费,要用有限的生命好好折腾一番 1.…