一张图阐述UML状态图的画法【软件工程】

article/2025/10/2 0:04:51

文章目录

    • I.介绍状态图
    • II.一图搞定状态图画法


I.介绍状态图

状态图展示了一个特定对象所有可能状态以及由于各种事件的发生而引起的状态间的转移。

它有两大特征:

1️⃣所有的变化都是针对某一个特定的对象,这个对象会触发各种的状态。

2️⃣触发的所有状态的诱因都是外部的条件发生改变。(例如触发付款状态的外部条件可以是用户下单成功这个外部的条件,这也是状态图与活动图最大的区别所在)


II.一图搞定状态图画法

在这里插入图片描述
这里提一下,其实如果认真对比状态图和活动图,一个现象是很明显的:

活动图和状态图在绘图上,所用的图形是一模一样的, 但它们代表的意义却有很大的差别。

另外在绘图时,状态图需要在转移状态时注明跳转的诱因,这大概是它和活动图在绘图上唯一的区别了。


最后,用一张公交车的状态图实例结束状态图的画法介绍:
在这里插入图片描述


http://chatgpt.dhexx.cn/article/GOgDCMIp.shtml

相关文章

UML状态图 几种状态图

目录 1、状态图模型要素 2、 几种类型 2.1初态(start state) 2.2终态 (end state) 2.3 中间状态 2.4组合状态 2.5历史状态(History state) 3、状态图建模步骤 4、几种状态图举例 1、状态图模型要素…

UML--状态图

一、 概述 状态图(State Diagram)用来描述一个特定对象在其生命周期中的各种状态以及状态之间的转换。这些对象可以是类、接口等等 二、作用 -状态图清晰地描述了状态之间的转换顺序,通过状态的转换顺序可以清晰看出事件的执行顺序。如果没有状态图就不可避免的要使…

DBSCAN聚类算法(商场数据分析)

DBSCAN聚类算法(商场数据分析) 引入库邻域半径,最少点数目参数数据最佳参数分析选择最佳参数,查看结果 引入库 from sklearn.cluster import DBSCAN邻域半径,最少点数目参数 from itertools import producteps_value…

机器学习-DBSCAN聚类算法

文章目录 DBSCAN算法原理DBSCAN算法流程DBSCAN的参数选择DBSCAN优缺点总结 K-Means算法和Mean Shift算法都是基于距离的聚类算法,基于距离的聚类算法的聚类结果是球状的簇,当数据集中的聚类结果是非球状结构时,基于距离的聚类算法的聚类效果并…

DBSCAN聚类算法实例

1.实验目标 算法:DBScan,基于密度的聚类算法 输入: D:一个包含n个数据的数据集 r:半径参数 minPts:领域密度阈值 输出:基于密度的聚类集合 2.实验步骤 标记D中所…

DBSCAN聚类算法原理和伪代码

1.DBSCAN算法 K-means聚类算法基于距离的聚类算法,其中的局限性在于,在凸集中进行聚类,但是在非凸集聚类效果不佳。如图: 对于下图,进行聚类,传统的聚类算法效果不佳,使用DBSCAN则效果更佳。 D…

Python学习2——DBSCAN聚类算法

一、原理 参考博文: DBSCAN聚类算法Python实现_徐奕的专栏-CSDN博客_dbscan pythonhttps://blog.csdn.net/xyisv/article/details/88918448DBSCAN是一种基于密度的聚类算法,这类密度聚类算法一般假定类别可以通过样本分布的紧密程度决定。同一类别的样…

DBSCAN聚类算法——MATLAB实现

声明:本文修改自《数学建模清风》老师的代码 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法。与划分和层次聚类方法不同,它将簇定义为密度相连的点的最大集合,能够把具有足够…

DBSCAN聚类算法实用案例

目录 1、DBSCAN算法介绍4、DBSCAN 的参数选择5、Scikit-learn中的DBSCAN的使用核心参数:属性:1、DBSCAN算法介绍 下图中,左边的图形可以使用K-Means算法进行聚类,右边两个有交叉部分【噪音】,故需要使用密度聚类(DBSCAN)算法 K-Means和层次聚类算法,是基于对象之间的距…

DBSCAN 聚类算法详解

参考: https://www.cnblogs.com/zhengxingpeng/p/6670486.htmlhttps://www.cnblogs.com/chaosimple/p/3164775.htmlhttps://www.jianshu.com/p/e8dd62bec026 1. DBSCAN简介: DBSCAN(Density-Based Spatial Clustering of Applications with …

数据挖掘(七) DBSCAN聚类算法

数据挖掘(七) DBSCAN聚类算法 DBSCAN是一种非常著名的基于密度的聚类算法。其英文全称是 Density-Based Spatial Clustering of Applications with Noise,意即:一种基于密度,对噪声鲁棒的空间聚类算法。直观效果上看&…

DBSCAN聚类算法的实现

DBSCAN聚类算法的实现 1. 作者介绍2.关于理论方面的知识介绍2.1 DBSCAN算法介绍2.2 鸢尾花数据集介绍 3.实验过程3.1 实验代码3.2 实现过程3.3 实验结果 4.参考文献 1. 作者介绍 刘鹏程,男,西安工程大学电子信息学院,…

毫米波雷达点云 DBSCAN聚类算法

毫米雷达点云 DBSCAN聚类算法 聚类的目的聚类算法分类原型聚类层次聚类密度聚类 DBSCAN聚类算法原理相关定义算法流程以及伪代码DBSCAN算法优缺点DBSCAN参数选择聚类衡量指标 DBSCAN算法仿真DBSCAN代码DBSCAN算法对毫米波雷达点云数据进行聚类 聚类的目的 聚类的目的是将一组数…

使用Python实现DBSCAN聚类算法及可视化

目录 实战过程 数据准备 DBSCAN模型 聚类结果评估 可视化展示 运行结果 总结 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,可以发现任意形状的簇,并且能够在噪声数据的…

聚类及DBSCAN 聚类算法

聚类及DBSCAN 聚类算法 一、聚类 1.概念 聚类就是按照某个特定标准把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性也尽可能地大。 2.聚类与分类的区别 聚类时,我们并不…

python DBSCAN聚类算法

文章目录 DBSCAN聚类算法基本思想基本概念工作流程参数选择DBSCAN的优劣势 代码分析Matplotlib Pyplotmake_blobsStandardScaleraxes类使用plt.cm.Spectral颜色分配python numpy 中linspace函数enumerate()函数plt.scatter()绘制散点图整体代码 DBSCAN聚…

聚类方法:DBSCAN算法研究(1)--DBSCAN原理、流程、参数设置、优缺点以及算法

DBSCAN聚类算法三部分: 1、 DBSCAN原理、流程、参数设置、优缺点以及算法; http://blog.csdn.net/zhouxianen1987/article/details/68945844 2、 matlab代码实现; blog:http://blog.csdn.net/zhouxianen1987/…

聚类算法--DBSCAN算法

一、DBSCAN算法 简介 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个基于密度的聚类算法。算法把簇看作数据空间中由低密度区域分割开的高密度对象区域;将足够高密度的区域划为簇,可以在有噪音的数据集中发现任意形状的聚类…

DBSCAN聚类算法

DBSCAN是一种基于密度的聚类算法 首先,DBSCAN算法会以任何尚未访问过的任意起始数据点为核心点,并对该核心点进行扩充。这时我们给定一个半径/距离ε,任何和核心点的距离小于ε的点都是它的相邻点。如果核心点附近有足够数量的点&#xff0…

DBSCAN 聚类算法

DBSCAN 聚类算法 DBSCAN 算法是一种基于密度的聚类算法,它能够发现任意形状的类别 (database 2),而 k k k-means 只能发现凸 (convex) 的形状 (database 1),同时 DBSCAN 还有很强的抗噪性 (database 3),在具有噪声的数据中发现任…