DBSCAN聚类算法实例

article/2025/10/2 0:41:20

1.实验目标

算法:DBScan,基于密度的聚类算法

输入:

D:一个包含n个数据的数据集

r:半径参数

minPts:领域密度阈值

输出:基于密度的聚类集合

2.实验步骤

标记D中所有的点为unvisted

foreachpinD

ifp.visit = unvisted

找出与点p距离不大于r的所有点集合N

IfN.size() < minPts

标记点p为噪声点

Else

foreachp' in N

Ifp'.visit == unvisted

找出与点p距离不大于r的所有点集合N'

IfN'.size()>=minPts

将集合N'加入集合N中去

Endif

Else

Ifp'未被聚到某个簇

将p'聚到当前簇

Ifp'被标记为噪声点

将p'取消标记为噪声点

EndIf

EndIf

EndIf

Endfor

Endif

Endif

Endfor

3.实验结果

 

4、实验结果

和传统的K-Means算法相比,DBSCAN最大的不同就是不需要输入类别数k,当然它最大的优势是可以发现任意形状的聚类簇,而不是像K-Means,一般仅仅使用于凸的样本集聚类。同时它在聚类的同时还可以找出异常点,这点和BIRCH算法类似。

  那么我们什么时候需要用DBSCAN来聚类呢?一般来说,如果数据集是稠密的,并且数据集不是凸的,那么用DBSCAN会比K-Means聚类效果好很多。如果数据集不是稠密的,则不推荐用DBSCAN来聚类。

    下面对DBSCAN算法的优缺点做一个总结。

    DBSCAN的主要优点有:

    1) 可以对任意形状的稠密数据集进行聚类,相对的,K-Means之类的聚类算法一般只适用于凸数据集。

    2) 可以在聚类的同时发现异常点,对数据集中的异常点不敏感。

    3) 聚类结果没有偏倚,相对的,K-Means之类的聚类算法初始值对聚类结果有很大影响。

    DBSCAN的主要缺点有:

    1)如果样本集的密度不均匀、聚类间距差相差很大时,聚类质量较差,这时用DBSCAN聚类一般不适合。

    2) 如果样本集较大时,聚类收敛时间较长,此时可以对搜索最近邻时建立的KD树或者球树进行规模限制来改进。

    3) 调参相对于传统的K-Means之类的聚类算法稍复杂,主要需要对距离阈值ϵ,邻域样本数阈值MinPts联合调参,不同的参数组合对最后的聚类效果有较大影响。


http://chatgpt.dhexx.cn/article/K5UQwb1x.shtml

相关文章

DBSCAN聚类算法原理和伪代码

1.DBSCAN算法 K-means聚类算法基于距离的聚类算法&#xff0c;其中的局限性在于&#xff0c;在凸集中进行聚类&#xff0c;但是在非凸集聚类效果不佳。如图&#xff1a; 对于下图&#xff0c;进行聚类&#xff0c;传统的聚类算法效果不佳&#xff0c;使用DBSCAN则效果更佳。 D…

Python学习2——DBSCAN聚类算法

一、原理 参考博文&#xff1a; DBSCAN聚类算法Python实现_徐奕的专栏-CSDN博客_dbscan pythonhttps://blog.csdn.net/xyisv/article/details/88918448DBSCAN是一种基于密度的聚类算法&#xff0c;这类密度聚类算法一般假定类别可以通过样本分布的紧密程度决定。同一类别的样…

DBSCAN聚类算法——MATLAB实现

声明&#xff1a;本文修改自《数学建模清风》老师的代码 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法。与划分和层次聚类方法不同&#xff0c;它将簇定义为密度相连的点的最大集合&#xff0c;能够把具有足够…

DBSCAN聚类算法实用案例

目录 1、DBSCAN算法介绍4、DBSCAN 的参数选择5、Scikit-learn中的DBSCAN的使用核心参数:属性:1、DBSCAN算法介绍 下图中,左边的图形可以使用K-Means算法进行聚类,右边两个有交叉部分【噪音】,故需要使用密度聚类(DBSCAN)算法 K-Means和层次聚类算法,是基于对象之间的距…

DBSCAN 聚类算法详解

参考&#xff1a; https://www.cnblogs.com/zhengxingpeng/p/6670486.htmlhttps://www.cnblogs.com/chaosimple/p/3164775.htmlhttps://www.jianshu.com/p/e8dd62bec026 1. DBSCAN简介&#xff1a; DBSCAN&#xff08;Density-Based Spatial Clustering of Applications with …

数据挖掘(七) DBSCAN聚类算法

数据挖掘&#xff08;七&#xff09; DBSCAN聚类算法 DBSCAN是一种非常著名的基于密度的聚类算法。其英文全称是 Density-Based Spatial Clustering of Applications with Noise&#xff0c;意即&#xff1a;一种基于密度&#xff0c;对噪声鲁棒的空间聚类算法。直观效果上看&…

DBSCAN聚类算法的实现

DBSCAN聚类算法的实现 1. 作者介绍2.关于理论方面的知识介绍2.1 DBSCAN算法介绍2.2 鸢尾花数据集介绍 3&#xff0e;实验过程3.1 实验代码3.2 实现过程3.3 实验结果 4&#xff0e;参考文献 1. 作者介绍 刘鹏程&#xff0c;男&#xff0c;西安工程大学电子信息学院&#xff0c;…

毫米波雷达点云 DBSCAN聚类算法

毫米雷达点云 DBSCAN聚类算法 聚类的目的聚类算法分类原型聚类层次聚类密度聚类 DBSCAN聚类算法原理相关定义算法流程以及伪代码DBSCAN算法优缺点DBSCAN参数选择聚类衡量指标 DBSCAN算法仿真DBSCAN代码DBSCAN算法对毫米波雷达点云数据进行聚类 聚类的目的 聚类的目的是将一组数…

使用Python实现DBSCAN聚类算法及可视化

目录 实战过程 数据准备 DBSCAN模型 聚类结果评估 可视化展示 运行结果 总结 DBSCAN&#xff08;Density-Based Spatial Clustering of Applications with Noise&#xff09;是一种基于密度的聚类算法&#xff0c;可以发现任意形状的簇&#xff0c;并且能够在噪声数据的…

聚类及DBSCAN 聚类算法

聚类及DBSCAN 聚类算法 一、聚类 1.概念 聚类就是按照某个特定标准把一个数据集分割成不同的类或簇&#xff0c;使得同一个簇内的数据对象的相似性尽可能大&#xff0c;同时不在同一个簇中的数据对象的差异性也尽可能地大。 2.聚类与分类的区别 聚类时&#xff0c;我们并不…

python DBSCAN聚类算法

文章目录 DBSCAN聚类算法基本思想基本概念工作流程参数选择DBSCAN的优劣势 代码分析Matplotlib Pyplotmake_blobsStandardScaleraxes类使用plt.cm.Spectral颜色分配python numpy 中linspace函数enumerate()函数plt.scatter&#xff08;&#xff09;绘制散点图整体代码 DBSCAN聚…

聚类方法:DBSCAN算法研究(1)--DBSCAN原理、流程、参数设置、优缺点以及算法

DBSCAN聚类算法三部分&#xff1a; 1、 DBSCAN原理、流程、参数设置、优缺点以及算法&#xff1b; http://blog.csdn.net/zhouxianen1987/article/details/68945844 2、 matlab代码实现&#xff1b; blog&#xff1a;http://blog.csdn.net/zhouxianen1987/…

聚类算法--DBSCAN算法

一、DBSCAN算法 简介 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个基于密度的聚类算法。算法把簇看作数据空间中由低密度区域分割开的高密度对象区域&#xff1b;将足够高密度的区域划为簇&#xff0c;可以在有噪音的数据集中发现任意形状的聚类…

DBSCAN聚类算法

DBSCAN是一种基于密度的聚类算法 首先&#xff0c;DBSCAN算法会以任何尚未访问过的任意起始数据点为核心点&#xff0c;并对该核心点进行扩充。这时我们给定一个半径/距离ε&#xff0c;任何和核心点的距离小于ε的点都是它的相邻点。如果核心点附近有足够数量的点&#xff0…

DBSCAN 聚类算法

DBSCAN 聚类算法 DBSCAN 算法是一种基于密度的聚类算法&#xff0c;它能够发现任意形状的类别 (database 2)&#xff0c;而 k k k-means 只能发现凸 (convex) 的形状 (database 1)&#xff0c;同时 DBSCAN 还有很强的抗噪性 (database 3)&#xff0c;在具有噪声的数据中发现任…

基于密度的聚类算法(1)——DBSCAN详解

基于密度的聚类算法&#xff08;1&#xff09;——DBSCAN详解 基于密度的聚类算法&#xff08;2&#xff09;——OPTICS详解 基于密度的聚类算法&#xff08;3&#xff09;——DPC详解 1. DBSCAN简介 DBSCAN&#xff08;Density-Based Spatial Clustering of Applications wit…

聚类算法之DBSCAN

DBSCAN聚类算法 1. DBSCAN算法基本概念 DBSCAN是一种典型的基于密度的聚类算法&#xff0c;基于一组邻域 ( ϵ , M i n P t s ) (\epsilon, MinPts) (ϵ,MinPts)来描述样本集的紧密程度。其中 ϵ \epsilon ϵ描述了某一样本的邻域距离阈值&#xff0c; M i n P t s MinPts Mi…

char型和int型之间的类型转换

char转换为int型数据 通过赋值方式将char类型变量转换为int型变量&#xff0c;变量值为char类型变量的ASCII码值 例如&#xff1a;int a ‘0’ 那么打印a的结果为48&#xff0c;如果想要得到正确的数字&#xff0c;需要减去ASCII码值。 int型转换为char型 char类型和int类…

C++:char转换为int(char to int )

文章目录 1.通过ascii码&#xff1a;2.直接转换&#xff08;更简单&#xff0c;推荐&#xff09; 1.通过ascii码&#xff1a; char a 0; int ia (int)a; /* note that the int cast is not necessary -- int ia a would suffice */ cout<<ia<<endl;结果如下&a…

c++ char[]与int之间的类型转换

char数组转int&#xff0c;int转char数组。 #include <cstdio> #include <iostream> #include <stdlib.h> using namespace std;int main(int argc , char *argv[]){int n 0; char str[110] "1234";//char[]转int n atoi(str);printf("%d…