人工神经网络概念及组成,人工神经网络基本结构

article/2025/10/23 10:27:05

1、简述人工神经网络的结构形式

神经网络有多种分类方式,例如,按网络性能可分为连续型与离散型网络,确定型与随机型网络:按网络拓扑结构可分为前向神经网络与反馈神经网络。本章土要简介前向神经网络、反馈神经网络和自组织特征映射神经网络。
前向神经网络是数据挖掘中广为应用的一种网络,其原理或算法也是很多神经网络模型的基础。径向基函数神经网络就是一种前向型神经网络。
Hopfield神经网络是反馈网络的代表。Hvpfi}ld网络的原型是一个非线性动力学系统,目前,已经在联想记忆和优化计算中得到成功应用。
模拟退火算法是为解决优化计算中局部极小问题提出的。Baltzmann机是具有随机输出值单元的随机神经网络,串行的Baltzmann机可以看作是对二次组合优化问题的模拟退火算法的具体实现,同时它还可以模拟外界的概率分布,实现概率意义上的联想记忆。
自组织竞争型神经网络的特点是能识别环境的特征并自动聚类。自组织竟争型神经网络已成功应用于特征抽取和大规模数据处理。

谷歌人工智能写作项目:小发猫

2、一个完整的人工神经网络包括

人工神经网络主要架构是由神经元、层和网络三个部分组成人工神经网络的常见结构。整个人工神经网络包含一系列基本的神经元、通过权重相互连接。
神经元是人工神经网络最基本的单元。单元以层的方式组,每一层的每个神经元和前一层、后-层的神经元连接,共分为输入层、输出层和隐藏层,三层连接形成一-个神经网络。
输入层只从外部环境接收信息,是由输入单元组成,而这些输入单元可接收样本中各种不同的特征信息。该层的每个神经元相当于自变量,不完成任何计算,只为下一层传递信息;隐藏层介于输入层和输出层之间,这些层完全用于分析,其函数联系输入层变量和输出层变量,使其更配适数据。
而最后,输出层生成最终结果,每个输出单元会对应到某一种特定的分类,为网络送给外部系统的结果值,,整个网络由调整链接强度的程序来达成学习的目的。

3、人工神经网络的基本组成是什么啊

基本结构是三层,输入层,隐层,输出层,各层由神经元和神经元之间的权值组成。

4、人工神经网络由哪几部分构成? 10

"人工神经网络"共有13个神经元构成,4个为输入神经元,1个为输 出神经元。也就是说,这个程序最多能处理一个四元关系(包含了二元, 三元)。

5、人工神经元的基本构成

人脑的神经元模型如图8.6所示。

图中一个神经元由细胞核、一个轴突、多个树突、突触组成。生物电信号从树突传入,经过细胞核处理,从轴突输出一个电脉冲信号。神经元通过树突与轴突之间的突触与其他神经元相连构成一个复杂的大规模并行网络。

图8.6 人脑的神经元模型[8]

1943年心理学家McCulloch和数学家Pitt将生物模型抽象化,建立了人工神经网络的数学模型——MP模型,如图8.7所示。

图8.7 人工神经元模型[8]

该人工神经元具有以下6点特征:

(1)每个神经元是一个多输入单输出单元;

(2)突触分兴奋和抑制两种;

(3)神经元有空间整合性和阀值;

(4)神经元的输入输出有固定的时间滞后,主要取决于突触延搁;

(5)忽略时间整合及不应期;

(6)神经元是非时变的,即突触延时和突触强度均为常数。

显然,上述假定是对生物神经元信息处理过程的简化和概括。以上内容可以由式(8.25)进行抽象和概括:

地球物理反演教程

其中:xi(t)表示t时刻神经元j接受到来自神经元i的信息输入;oj(t)表示t时刻神经元j的输出;τij为输入输出间的突触时延;Tj为神经元j的阀值;wij为神经元i到神经元j的突触连接系数或权值;f{ }为神经元的转移函数,有时又称激励函数。

为简单起见,将上式中的突触时延取为单位时间,则式(8.25)变为

地球物理反演教程

上式描述的神经元数学模型全面表达了神经元模型的6点假设。xi(t)有多个,而oj(t)只有一个,体现了“多输入单输出”。权重值wij的正负体现了“突触的兴奋和抑制”。输入总和net'j(t)称为神经元在t时刻的净输入:

地球物理反演教程

上式体现了神经元j的“空间整合性”而忽略了“时间整合作用和不应期”。当net'j(t)-Tj>0时,神经元才被激活。oj(t+1)与xi(t)的单位时间差代表所有神经元具有相同的、恒定的工作节律,对应于“突触延搁”。wij与时间无关,体现了“非时变”。


http://chatgpt.dhexx.cn/article/DjgYDexH.shtml

相关文章

C语言实现矩阵卷积运算

直观的说卷积操作可以理解为——每次透过一个较小的“窗口”去覆盖被输入进来的大窗口中的某一部分所得出的结果。每次得出结果后小窗口就会根据步长滑动至下一个位置并重复这一计算过程,最终得到卷积后的输出矩阵结果。 卷积的计算过程可由下图直观说明。 必须注…

卷积神经网络互相关运算和卷积运算原理

卷积神经网络用的其实不是卷积运算,实际用的是互相关运算;互相关运算和卷积运算的区别在于对输入结果所加的权重系数的顺序不同而已,但由于神经网络本身就是训练参数的,所以两者的输出结果其实是一样的,而互相关运算相…

全网最全的卷积运算过程

卷积运算 1.卷积核的通道(也叫滤波器)的个数得与被卷积的图片通道数相同 eg:输入图片是102410243,即通道数为3,那么每个卷积核得有3个通道 2.卷积核做的是线性运算,核上的每个值与它滑动到的对应位置上的值相乘&…

多维卷积运算

多维卷积运算 如果输入的图片是灰度图,每个像素点的值是一个整数,只需使用2D卷积运算。 但如果输入的图片是彩色的,每个像素点的值是1个由3个整数组成的组,例如(R,G,B)(155,23,222). 对于这样多维的输入图片,需要使用…

信号与系统 - 卷积运算

信号的时域分解 卷积积分 卷积定义 卷积积分的图解法 举例1 举例2 总结 卷积的性质 交换律 分配律 结合律 奇异函数的卷积性质 普通函数与冲激函数的卷积 普通函数与阶跃函数的卷积 普通函数和冲击偶函数卷积 举例 卷积的微积分分特性 卷积的微分特性 卷积的积分特性 卷积的…

【15】opencv卷积运算

参考: 【OpenCV学习笔记】之卷积及卷积算子(convolution)_点滴成海~的博客-CSDN博客_卷积算子(关于卷积运算) opencv RNG函数 - 0MrMKG - 博客园(对于RNG函数的解答) (一&#xf…

机器学习4:卷积运算简介

机器学习4:卷积运算简介【旧笔记整理】 (1)卷积运算简介: 卷积即在卷积核滑动过程中,矩阵与卷积核对应位置的数据相乘最后乘积求和的计算过程。 (2)卷积运算的特性: ①稀疏连接&…

【OpenCV 例程200篇】52. 图像的相关与卷积运算

【OpenCV 例程200篇】52. 图像的相关与卷积运算 欢迎关注 『OpenCV 例程200篇』 系列,持续更新中 欢迎关注 『Python小白的OpenCV学习课』 系列,持续更新中 滤波通常是指对图像中特定频率的分量进行过滤或抑制。图像滤波是在尽可能保留图像细节特征的条件…

Python遥感图像处理应用篇(五):python如何使用numpy对遥感图像做卷积运算

本篇接着上一篇(Python遥感图像处理应用篇(四):python如何使用numpy读取遥感图像光谱值)继续深入,对遥感图像做卷积运算处理 1.基本思路 1.1 设置卷积核 这里就用3*3大小的卷积核吧,可以根据需求任意设置卷积核数据达到图像均衡化、锐化、边缘增强等不同效果。 1.2 中心…

求助:MATLAB中实现卷积运算和理论分析中的卷积运算有什么区别?

MATLAB中实现卷积运算和理论分析中的卷积运算有什么区别。 欢迎使用Markdown编辑器 你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。 新的改变 …

通过具体的例子说明一维和二维的相关运算、卷积运算究竟是怎么做的。

在图像处理中,大量的算法中用到的运算其实都是相关运算和卷积运算。 所以,我们很有必要知道相关运算、卷积运算究竟是怎么做的。 本篇博文通过具体而简单的例子向大家说明相关运算、卷积运算究竟是怎么做的。 01-一维相关运算 下图显示了一维序列n与窗口…

卷积运算与互相关运算

在卷积神经网络中,虽然卷积层得名于卷积(convolution)运算,但我们通常在卷积层中使用更加直观的互相关运算(cross-correlation)运算。 卷积运算与互相关运算的联系 卷积运算与互相关运算类似。为了得到卷积运算的输出,只需将核数组左右翻转…

卷积运算(CNN卷积神经网络)

文章目录 图像卷积互相关运算卷积层图像中目标的边缘检测学习卷积核小结 图像卷积 最近学习到了卷积深度网络,有些本质概念太深暂时还没有理解透彻,现在主要记录下卷积神经网络中的一些计算。 以下介绍与计算均出自李沐老师的《动手学深度学习》&#…

java 怎么做卷积运算,入门教程之算法系列(二):卷积运算与模糊操作

卷积在信号处理领域有极其广泛的应用,也有严格的物理和数学定义。 OpenCV中对图像进行模糊操作,其背后的原理就是卷积运算,可是究竟卷积运算是什么,模糊的卷积算法又是如何实现的呢?本文将进行讨论。考虑到大部分读者的非专业性,本人将尽量不使用专业术语,而使用通俗易懂…

python实现卷积运算

一、卷积定义与朴素计算方法: 图1 卷积定义与计算方法 二、 Python代码实现 结合伪代码实现python代码如下(因为我是先写的代码,后才发现上面的伪代码,所以循环次序略有不同): import torch.nn as nn im…

卷积运算

卷积层 卷积的本质是用卷积核的参数来提取数据的特征,通过矩阵点乘运算与求和运算来得到结果。 下面给出一个基本的二维卷积的运算过程,即 y ω x b y \omega x b yωxb 特征图 ( x x x) 的大小为 1 x 5 x 5, 输入的通道数为 1.卷积核 ( ω \omeg…

深入浅出理解卷积运算

提起卷积运算相信大家都不陌生,这是一种很常见的运算。我们在学习《信号与系统》时就一直在和卷积打交道,在后来的一些课程中也有卷积运算的身影,比如《自动控制原理现代部分》中的卷积定理等。 在学习《信号与系统》时我们知道了卷积的定义&…

卷积计算——1. 关于卷积的基本概念

文章目录 卷积的基本概念卷积运算公式交换律分配律结合律数乘结合律 卷积核代码的基本框架 卷积的基本概念 卷积,是一个强有力的数学工具,在计算机领域中有很多非常不错的运用,能产生很多意想不到的效果和输出。 数学上,其连续函…

数(3)相关运算和卷积运算

目录 相关运算 卷积运算 连续信号 离散信号 卷积性质 卷积定理 (参考其他多篇博客,学习自用,侵删) 相关运算 相关运算是两个序列的相似性比较的一种数学运算。 公式里面的序列,可能是实数,可能是复数…

各种卷积方式的最全讲解

文章目录 一:卷积的定义二:标准卷积1.1D卷积Ⅰ:一维Full卷积Ⅱ:一维Same卷积Ⅲ:一维Valid卷积Ⅳ:三种一维卷积的相互关系 2.2D卷积3.3D卷积 三:转置卷积四:Separable卷积五&#xff…