【OpenCV 例程200篇】52. 图像的相关与卷积运算

article/2025/10/23 10:26:57

【OpenCV 例程200篇】52. 图像的相关与卷积运算

欢迎关注 『OpenCV 例程200篇』 系列,持续更新中
欢迎关注 『Python小白的OpenCV学习课』 系列,持续更新中

滤波通常是指对图像中特定频率的分量进行过滤或抑制。图像滤波是在尽可能保留图像细节特征的条件下对目标图像的噪声进行抑制,是常用的图像预处理操作。

数据采集都会带有一定的噪声,图像的噪声可以理解为灰度值的随机变化。对图像在空间域存在的随机噪声,可以通过平滑技术进行抑制或去除,称为空间域图像滤波。

频率域滤波是通过傅里叶变换方法实现的,而空间域滤波则是通过相关与卷积运算实现。常用的平滑处理算法有基于二维离散卷积的高斯平滑、均值平滑,基于统计方法的中值平滑,保留边缘信息的双边滤波、导向滤波等。

空间滤波器是由邻域和定义的操作构成的,滤波器规定了滤波时采用的邻域形状及该区域内像素值的处理方法。滤波器也被称为 “核”、“模板”、“窗口”、“掩模”、“算子”,一般在信号处理中称为 “滤波器”,在数学领域称为 “核”。线性滤波器就是指基于线性核的滤波,也就是卷积运算。


1.1 相关与卷积运算

滤波器核是指像素周围某一大小的矩形邻域,也称为模板、滑动窗口。

**相关运算(Correlation operation)**是利用模板对图像进行邻域操作:将滤波器模板的中心移动到待处理的像素点,对模板区域的各点加权相乘后求和。

大小为 m*n 的核(模板) w 与图像 f(x,y) 的相关运算 ( w ⋄ f ) ( x , y ) (w \diamond f)(x,y) (wf)(x,y) 的数学描述为:

( w ⋄ f ) ( x , y ) = ∑ s = − a a ∑ t = − b b w ( s , t ) ∗ f ( x + s , y + t ) (w \diamond f)(x,y) = \sum_{s=-a}^a \sum_{t=-b}^b w(s,t) * f(x+s,y+t) (wf)(x,y)=s=aat=bbw(s,t)f(x+s,y+t)
相关运算的计算步骤如下:

(1)将模板在图像中逐点移动,模板中心移动到被处理的像素点上;
(2)将模板区域中的各点的系数(权值)与图像的像素值相乘,对乘积求和,即加权求和;
(3)将加权求和结果赋值给模板中心的像素。

注意, “相关运算” 中的 “相关” 不是 “有关的”,而是一种特定的数学运算方式。

**卷积运算(Convolution operation)**也是利用模板对图像进行邻域操作,只是把相关运算的模板旋转了 180度。

大小为 m*n 的核(模板) w 与图像 f(x,y) 的卷积运算 ( w ★ f ) ( x , y ) (w \bigstar f)(x,y) (wf)(x,y) 的数学描述为:
( w ★ f ) ( x , y ) = ∑ s = − a a ∑ t = − b b w ( s , t ) ∗ f ( x − s , y − t ) (w \bigstar f)(x,y) = \sum_{s=-a}^a \sum_{t=-b}^b w(s,t) * f(x-s,y-t) (wf)(x,y)=s=aat=bbw(s,t)f(xs,yt)

卷积运算符合交换律、结合律和分配律,即:
f ★ g = g ★ f f ★ ( g ★ h ) = ( f ★ g ) ★ h f ★ ( g + h ) = ( f ★ g ) + ( f ★ h ) f \bigstar g = g \bigstar f \\ f \bigstar (g \bigstar h) = (f \bigstar g) \bigstar h \\ f \bigstar (g + h) = (f \bigstar g) + (f \bigstar h) fg=gff(gh)=(fg)hf(g+h)=(fg)+(fh)

在这里插入图片描述

(本图片来自 “小黑鸭” 《OpenCV学习+常用函数记录②:图像卷积与滤波》,特此致谢。)


1.2 图像的边界扩充

相关和卷积运算都要对图像的边界点要进行特殊处理,就需要将边界进行适当扩充。

函数说明:

OpenCV 中提供了函数 cv.copyMakeBorder 进行边界扩充方式,也可以为图像设置边框。

cv.copyMakeBorder(src, top, bottom, left, right, borderType[, dst[, value]]) → dst

参数说明:

  • src:进行边界扩充的图像
  • top, bottom, left, right:上侧、下侧、左侧、右侧边界扩充的的宽度(像素数)
  • value:当 borderType 为 BORDER_CONSTANT 时,以常量(value)填充扩充的边界,默认值为 (0,0,0)
  • borderType 边界扩充的类型
    • cv2.BORDER_REPLICATE:复制,复制最边缘像素进行填充(aa | abcdefg | gg),中值滤波采用复制法
    • cv2.BORDER_REFLECT:对称法,以图像边缘为轴进行对称填充(cba| abcdefg | gfe)
    • cv2.BORDER_REFLECTT_101:倒映法,以图像最边缘像素为轴进行对称填充(dcb| abcdefg | fed),函数 filter2D, blur, GaussianBlur, bilateralFilter 中默认的边界处理方法
    • cv2.BORDER_WRAP:用另一侧元素来填充这一侧的扩充边界(efg| abcdefg | ab)
    • cv2.BORDER_CONSTANT:以常数(value)作为像素值进行扩充(vv | abcdefg | vv)

例程 1.65:图像的边界扩充

    # 1.65 图像的边界扩充img = cv2.imread("../images/imgRose1.jpg")  # 读取彩色图像(BGR)top = bottom = left = right = 50imgReplicate = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_REPLICATE)imgReflect = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_REFLECT)imgReflect101 = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_REFLECT_101)imgWrap = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_WRAP)imgConstant = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(200,200,200))plt.figure(figsize=(9, 6))plt.subplot(231), plt.axis([-50,562,-50,562]), plt.title('ORIGINAL'), plt.axis('off')plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))plt.subplot(232), plt.axis('off'), plt.title('REPLICATE')plt.imshow(cv2.cvtColor(imgReplicate, cv2.COLOR_BGR2RGB))plt.subplot(233), plt.axis('off'), plt.title('REFLECT')plt.imshow(cv2.cvtColor(imgReflect, cv2.COLOR_BGR2RGB))plt.subplot(234), plt.axis('off'), plt.title('REFLECT_101')plt.imshow(cv2.cvtColor(imgReflect101, cv2.COLOR_BGR2RGB))plt.subplot(235), plt.axis('off'), plt.title('WRAP')plt.imshow(cv2.cvtColor(imgWrap, cv2.COLOR_BGR2RGB))plt.subplot(236), plt.axis('off'), plt.title('CONSTANT')plt.imshow(cv2.cvtColor(imgConstant, cv2.COLOR_BGR2RGB))plt.show()

在这里插入图片描述



(本节完)

版权声明:

youcans@xupt 原创作品,转载必须标注原文链接

Copyright 2021 youcans, XUPT

Crated:2021-11-29


欢迎关注 『OpenCV 例程200篇』 系列,持续更新中
欢迎关注 『Python小白的OpenCV学习课』 系列,持续更新中

【OpenCV 例程200篇】01. 图像的读取(cv2.imread)
【OpenCV 例程200篇】02. 图像的保存(cv2.imwrite)
【OpenCV 例程200篇】03. 图像的显示(cv2.imshow)
【OpenCV 例程200篇】04. 用 matplotlib 显示图像(plt.imshow)
【OpenCV 例程200篇】05. 图像的属性(np.shape)
【OpenCV 例程200篇】06. 像素的编辑(img.itemset)
【OpenCV 例程200篇】07. 图像的创建(np.zeros)
【OpenCV 例程200篇】08. 图像的复制(np.copy)
【OpenCV 例程200篇】09. 图像的裁剪(cv2.selectROI)
【OpenCV 例程200篇】10. 图像的拼接(np.hstack)
【OpenCV 例程200篇】11. 图像通道的拆分(cv2.split)
【OpenCV 例程200篇】12. 图像通道的合并(cv2.merge)
【OpenCV 例程200篇】13. 图像的加法运算(cv2.add)
【OpenCV 例程200篇】14. 图像与标量相加(cv2.add)
【OpenCV 例程200篇】15. 图像的加权加法(cv2.addWeight)
【OpenCV 例程200篇】16. 不同尺寸的图像加法
【OpenCV 例程200篇】17. 两张图像的渐变切换
【OpenCV 例程200篇】18. 图像的掩模加法
【OpenCV 例程200篇】19. 图像的圆形遮罩
【OpenCV 例程200篇】20. 图像的按位运算
【OpenCV 例程200篇】21. 图像的叠加
【OpenCV 例程200篇】22. 图像添加非中文文字
【OpenCV 例程200篇】23. 图像添加中文文字
【OpenCV 例程200篇】23. 图像添加中文文字
【OpenCV 例程200篇】24. 图像的仿射变换
【OpenCV 例程200篇】25. 图像的平移
【OpenCV 例程200篇】26. 图像的旋转(以原点为中心)
【OpenCV 例程200篇】27. 图像的旋转(以任意点为中心)
【OpenCV 例程200篇】28. 图像的旋转(直角旋转)
【OpenCV 例程200篇】29. 图像的翻转(cv2.flip)
【OpenCV 例程200篇】30. 图像的缩放(cv2.resize)
【OpenCV 例程200篇】31. 图像金字塔(cv2.pyrDown)
【OpenCV 例程200篇】32. 图像的扭变(错切)
【OpenCV 例程200篇】33. 图像的复合变换
【OpenCV 例程200篇】34. 图像的投影变换
【OpenCV 例程200篇】35. 图像的投影变换(边界填充)
【OpenCV 例程200篇】36. 直角坐标与极坐标的转换
【OpenCV 例程200篇】37. 图像的灰度化处理和二值化处理
【OpenCV 例程200篇】38. 图像的反色变换(图像反转)
【OpenCV 例程200篇】39. 图像灰度的线性变换
【OpenCV 例程200篇】40. 图像分段线性灰度变换
【OpenCV 例程200篇】41. 图像的灰度变换(灰度级分层)
【OpenCV 例程200篇】42. 图像的灰度变换(比特平面分层)
【OpenCV 例程200篇】43. 图像的灰度变换(对数变换)
【OpenCV 例程200篇】44. 图像的灰度变换(伽马变换)
【OpenCV 例程200篇】45. 图像的灰度直方图
【OpenCV 例程200篇】46. 直方图均衡化
【OpenCV 例程200篇】47. 图像增强—直方图匹配
【OpenCV 例程200篇】48. 图像增强—彩色直方图匹配
【OpenCV 例程200篇】49. 图像增强—局部直方图处理
【OpenCV 例程200篇】50. 图像增强—直方图统计量图像增强
【OpenCV 例程200篇】51. 图像增强—直方图反向追踪
【OpenCV 例程200篇】52. 图像的相关与卷积运算
【OpenCV 例程200篇】53. Scipy 实现图像二维卷积
【OpenCV 例程200篇】54. OpenCV 实现图像二维卷积
【OpenCV 例程200篇】55. 可分离卷积核
【OpenCV 例程200篇】56. 低通盒式滤波器
【OpenCV 例程200篇】57. 低通高斯滤波器
【OpenCV 例程200篇】58. 非线性滤波—中值滤波
【OpenCV 例程200篇】59. 非线性滤波—双边滤波
【OpenCV 例程200篇】60. 非线性滤波—联合双边滤波
【OpenCV 例程200篇】61. 导向滤波(Guided filter)
【OpenCV 例程200篇】62. 图像锐化——钝化掩蔽
【OpenCV 例程200篇】63. 图像锐化——Laplacian 算子
【OpenCV 例程200篇】64. 图像锐化——Sobel 算子
【OpenCV 例程200篇】65. 图像锐化——Scharr 算子
【OpenCV 例程200篇】66. 图像滤波之低通/高通/带阻/带通
【OpenCV 例程200篇】67. 空间域图像增强的综合应用
【OpenCV 例程200篇】68. 空间域图像增强的综合应用
【OpenCV 例程200篇】69. 连续非周期信号的傅立叶系数
【OpenCV 例程200篇】70. 一维连续函数的傅里叶变换
【OpenCV 例程200篇】71. 连续函数的取样
【OpenCV 例程200篇】72. 一维离散傅里叶变换
【OpenCV 例程200篇】73. 二维连续傅里叶变换
【OpenCV 例程200篇】74. 图像的抗混叠
【OpenCV 例程200篇】75. Numpy 实现图像傅里叶变换
【OpenCV 例程200篇】76. OpenCV 实现图像傅里叶变换
【OpenCV 例程200篇】77. OpenCV 实现快速傅里叶变换
【OpenCV 例程200篇】78. 频率域图像滤波基础
【OpenCV 例程200篇】79. 频率域图像滤波的基本步骤
【OpenCV 例程200篇】80. 频率域图像滤波详细步骤
【OpenCV 例程200篇】81. 频率域高斯低通滤波器
【OpenCV 例程200篇】82. 频率域巴特沃斯低通滤波器
【OpenCV 例程200篇】83. 频率域低通滤波:印刷文本字符修复
【OpenCV 例程200篇】84. 由低通滤波器得到高通滤波器
【OpenCV 例程200篇】85. 频率域高通滤波器的应用
【OpenCV 例程200篇】86. 频率域滤波应用:指纹图像处理
【OpenCV 例程200篇】87. 频率域钝化掩蔽
【OpenCV 例程200篇】88. 频率域拉普拉斯高通滤波
【OpenCV 例程200篇】89. 带阻滤波器的传递函数
【OpenCV 例程200篇】90. 频率域陷波滤波器
【OpenCV 例程200篇】91. 高斯噪声、瑞利噪声、爱尔兰噪声
【OpenCV 例程200篇】92. 指数噪声、均匀噪声、椒盐噪声
【OpenCV 例程200篇】93. 噪声模型的直方图
【OpenCV 例程200篇】94. 算术平均滤波器
【OpenCV 例程200篇】95. 几何均值滤波器
【OpenCV 例程200篇】96. 谐波平均滤波器
【OpenCV 例程200篇】97. 反谐波平均滤波器
【OpenCV 例程200篇】98. 统计排序滤波器
【OpenCV 例程200篇】99. 修正阿尔法均值滤波器
【OpenCV 例程200篇】100. 自适应局部降噪滤波器


http://chatgpt.dhexx.cn/article/qxsCLspc.shtml

相关文章

Python遥感图像处理应用篇(五):python如何使用numpy对遥感图像做卷积运算

本篇接着上一篇(Python遥感图像处理应用篇(四):python如何使用numpy读取遥感图像光谱值)继续深入,对遥感图像做卷积运算处理 1.基本思路 1.1 设置卷积核 这里就用3*3大小的卷积核吧,可以根据需求任意设置卷积核数据达到图像均衡化、锐化、边缘增强等不同效果。 1.2 中心…

求助:MATLAB中实现卷积运算和理论分析中的卷积运算有什么区别?

MATLAB中实现卷积运算和理论分析中的卷积运算有什么区别。 欢迎使用Markdown编辑器 你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。 新的改变 …

通过具体的例子说明一维和二维的相关运算、卷积运算究竟是怎么做的。

在图像处理中,大量的算法中用到的运算其实都是相关运算和卷积运算。 所以,我们很有必要知道相关运算、卷积运算究竟是怎么做的。 本篇博文通过具体而简单的例子向大家说明相关运算、卷积运算究竟是怎么做的。 01-一维相关运算 下图显示了一维序列n与窗口…

卷积运算与互相关运算

在卷积神经网络中,虽然卷积层得名于卷积(convolution)运算,但我们通常在卷积层中使用更加直观的互相关运算(cross-correlation)运算。 卷积运算与互相关运算的联系 卷积运算与互相关运算类似。为了得到卷积运算的输出,只需将核数组左右翻转…

卷积运算(CNN卷积神经网络)

文章目录 图像卷积互相关运算卷积层图像中目标的边缘检测学习卷积核小结 图像卷积 最近学习到了卷积深度网络,有些本质概念太深暂时还没有理解透彻,现在主要记录下卷积神经网络中的一些计算。 以下介绍与计算均出自李沐老师的《动手学深度学习》&#…

java 怎么做卷积运算,入门教程之算法系列(二):卷积运算与模糊操作

卷积在信号处理领域有极其广泛的应用,也有严格的物理和数学定义。 OpenCV中对图像进行模糊操作,其背后的原理就是卷积运算,可是究竟卷积运算是什么,模糊的卷积算法又是如何实现的呢?本文将进行讨论。考虑到大部分读者的非专业性,本人将尽量不使用专业术语,而使用通俗易懂…

python实现卷积运算

一、卷积定义与朴素计算方法: 图1 卷积定义与计算方法 二、 Python代码实现 结合伪代码实现python代码如下(因为我是先写的代码,后才发现上面的伪代码,所以循环次序略有不同): import torch.nn as nn im…

卷积运算

卷积层 卷积的本质是用卷积核的参数来提取数据的特征,通过矩阵点乘运算与求和运算来得到结果。 下面给出一个基本的二维卷积的运算过程,即 y ω x b y \omega x b yωxb 特征图 ( x x x) 的大小为 1 x 5 x 5, 输入的通道数为 1.卷积核 ( ω \omeg…

深入浅出理解卷积运算

提起卷积运算相信大家都不陌生,这是一种很常见的运算。我们在学习《信号与系统》时就一直在和卷积打交道,在后来的一些课程中也有卷积运算的身影,比如《自动控制原理现代部分》中的卷积定理等。 在学习《信号与系统》时我们知道了卷积的定义&…

卷积计算——1. 关于卷积的基本概念

文章目录 卷积的基本概念卷积运算公式交换律分配律结合律数乘结合律 卷积核代码的基本框架 卷积的基本概念 卷积,是一个强有力的数学工具,在计算机领域中有很多非常不错的运用,能产生很多意想不到的效果和输出。 数学上,其连续函…

数(3)相关运算和卷积运算

目录 相关运算 卷积运算 连续信号 离散信号 卷积性质 卷积定理 (参考其他多篇博客,学习自用,侵删) 相关运算 相关运算是两个序列的相似性比较的一种数学运算。 公式里面的序列,可能是实数,可能是复数…

各种卷积方式的最全讲解

文章目录 一:卷积的定义二:标准卷积1.1D卷积Ⅰ:一维Full卷积Ⅱ:一维Same卷积Ⅲ:一维Valid卷积Ⅳ:三种一维卷积的相互关系 2.2D卷积3.3D卷积 三:转置卷积四:Separable卷积五&#xff…

深度学习(一):卷积运算

一、卷积核与池化: 1.1 卷积核(Convolutional): 将输入图像中一个小区域中像素加权平均后成为输出图像中的每个对应像素,其中权值由一个函数定义,这个函数称为卷积核(滤波器)。 一般可以看作对某个局部的…

深度学习-图解卷积运算

卷积神经网络(Convolutional Neural Network,CNN)针对全连接网络 的局限做出了修正,加入了卷积层(Convolution层)和池化层(Pooling 知 层)。 CNN被广泛应用于图像识别、语音识别等各…

【svg文字路径动画,让文字沿着路径动起来】

最近项目里面用到了这个文字路径动画,不得不说确实挺好玩的,如果有需要的小伙伴可以参考! 代码片段 由于公司之前项目里也用到过,但是我是第一次写,所以第一时间还是先看看前辈是怎么处理的,借鉴一下长长…

Qml路径动画-PathAnimation

Qml中的PathAnimation可以让目标沿着一个指定路径运行。 PathAnimation的属性 anchorPoint:使用"x,y"来指定运动的锚定点。orientation:指定控制目标对象沿着路径运动的旋转策略。path属性的类型为Path,选择你要构造的路径。 sta…

dotween路径移动_Unity---DOTween插件学习(3)---获取数据、协程、路径动画

[Toc] 本文及系列参考于Andy老师的DOTween系列 欢迎大家关注**Andy老师** 10、获取数据 类方法 返回所有暂停的动画,没有则返回null var list DOTween.PausedTweens(); 返回所有真正播放的动画,没有则返回null var list DOTween.PlayingTweens(); 获取…

houdini:固定朝向的路径动画

涉及节点:follow path 一、模型准备 路径、朝向的物体,以及运动的物体,一共三个 二、follow path 节点 原来xxxx是一个属性,现在好像必须在创建路径动画的时候就选择xxx了 下面请紧跟我的步骤 steep1:点击follow p…

Dotween运动曲线与路径动画

Dotween运动曲线与路径动画 Dotween--运动曲线内置的运动曲线AnimationCurve Dotween--路径动画一:设置一个数组存放位置坐标二:直接写出自己想要到的坐标 Dotween–运动曲线 想要理解Dotwenn的运动曲线,最重要的一步就是要理解坐标的的含义,这里看图讲…

AE路径动画

动画效果预览 一、AI跑道汽车 注:绘制完成后,给需要作动效的部位进行单独新建图层并命名; ctrl c,ctrlf原位粘贴 二、导入AE 具体导入方法请查看此文: AE动画导入/导出_TING糖的博客-CSDN博客AE导入/导出方式http…