理解Kalman滤波的使用

article/2025/10/5 19:36:16

Kalman滤波简介


  Kalman滤波是一种线性滤波与预测方法,原文为:A New Approach to Linear Filtering and Prediction Problems。文章推导很复杂,看了一半就看不下去了,既然不能透彻理解其原理,但总可以通过实验来理解其具体的使用方法。

  Kalman滤波分为2个步骤,预测(predict)和校正(correct)。预测是基于上一时刻状态估计当前时刻状态,而校正则是综合当前时刻的估计状态与观测状态,估计出最优的状态。预测与校正的过程如下:

  预测:

  校正:

 

  公式1是状态预测,公式2是误差矩阵预测,公式3是kalman增益计算,公式4是状态校正,其输出即是最终的kalman滤波结果,公式5是误差矩阵更新。各变量说明如下表:

xk

k时刻的状态

A

状态转移矩阵,和具体的线性系统相关

uk

K时刻外界对系统的作用

B

输入控制矩阵,外界的影响如何转化为对状态的影响

P

误差矩阵

Q

预测噪声协方差矩阵

R

测量噪声协方差矩阵

H

观测矩阵

Kk

K时刻的kalman增益

zk

K时刻的观测值

 

算法实现与分析


  Kalman滤波最复杂的计算应该就是公式3中的矩阵求逆,考虑到实现的方便性,采用matlab来简单实现,本文主要是分析kalman滤波中各个变量的作用和对滤波结果的影响。具体代码如下:

View Code

  在matlab中,kalman滤波实际上就是上面那5个公式,而难点却是在测试代码中针对不同问题各个变量的初始化上,下面来逐个分析。

1.建立模型,明确观测量,系统状态以及其转移方程(下面这段公式太多,通过word写好后截图)

 

2.初始化噪声协方差矩阵

  经过上面一步,只有PQRK四个矩阵还未确定了。显然增益矩阵K是不需要初始化的,P是误差矩阵,初始化可以是一个随机的矩阵或者0,只要经过几次的处理基本上就能调整到正常的水平,因此也就只会影响前面几次的滤波结果。

  Q和R分别是预测和观测状态协方差矩阵,一般可以简单认为系统状态各维之间(即上面的a和b)相互独立,那么Q和R就可以设置为对角阵。而这两个对角线元素的大小将直接影响着滤波结果,若Q的元素远大于R的元素,则预测噪声大,从而更相信观测值,这样可能使得kalman滤波结果与观测值基本一致;反之,则更相信预测,kalman滤波结果会表现得比较规整和平滑;若二者接近,则滤波结果介于前面两者之间,根据实验效果看也缺乏实际使用价值。

  以上几个矩阵确定后,对于状态x,由于0时刻我们没有任何关于该系统的知识,可以使用0时刻的测量值z0来初始x0,预测从k=1开始;也可以初始化-1时刻的状态,当然这个状态实际是未知的,也就可随机取。2种方式都可以,但使用0时刻测量值来初始化状态,可以使得前面几次预测更准确。

3.实验分析

  首先使用下面代码生成一组数据存在z.mat中:

View Code

  可以看出其近似为一条振幅不断增大的正弦曲线叠加一个随机噪声。绘制出来如下:

  如果使用上面推导的恒定状态系统模型,代码与实验结果如下:

View Code

  可以看出滤波结果完全滞后于测量数据,其根本原因在于建立的模型存在问题。

  如果采用上面推导的物体运动模型则只需要修改部分代码,主要是矩阵A和H,以及其他矩阵对应的维数,具体如下:

View Code

   运行结果如下图,蓝色为观测数据,红色为kalman滤波数据,右侧为局部放大图。可以看出经过滤波后的数据相当平滑,这里Q和R中元素的量级分别为cQ和cR,下图结果可以看到cR比cQ多了6个数量级。

(1)

  增加几组结果用于对比分析,对于的cQ和cR见图的标题。

(2)

(3)

(4)

 

(5)

(6)

  首先看图1和2,cR与cQ大小均相差了3个数量级,而二者的比值相同,则kalman滤波结果相同。

  再看图2~图6,cR/cQ在不断减小,kalman滤波结果的平滑性也在不断降低,到图5和6中,滤波结果完全和观测值相同,说明此时kalman滤波已经完全相信观测值了。原因在于cR/cQ过小,系统认为预测噪声的方差很大,不值得信赖,而观测值的噪声方差小,可信度高。

 

总结


  根据上面的实验结果,可以看出Kalman滤波应用中的几个问题:

  1.模型建立的正确性从根本上决定了滤波效果的正确性。

  上面使用物体静止模型进行滤波,结果完全不对,而使用匀速运动模型则能达到较好的效果。从根本上讲,上面的数据也不是匀速运动的,为何结果会基本正确?看看第一个使用静止模型的滤波结果,虽然我们假定了物体是静止的,但由于观测数据的作用,kalman滤波结果也会有相应的运动而不是完全静止,也就是说滤波器在不停地修正这个状态,而在匀速运动模型中,物体的速度我们认为不变,但同样地kalman滤波器也会不停地修正这个速度,滤波器中计算的速度实质的偏离了真实速度的,因此最终也会有相应的偏差,不过这个偏差在我们容许范围内,也就可以大胆使用了。

  如果能确定物体是匀变速直线运动,使用相应带加速度的模型会得到更准确的效果。但是越严格的模型其适用范围也相应越小。

  2.影响滤波结果平滑性的因素是cR/cQ,这个值反映了我们对于预测和观测值的信任程度;其值越大则越相信预测结果,滤波结果平滑性好;反之则越相信观测结果,滤波结果越偏向于观测值。一般我们使用kalman滤波器是为了能平滑数据的波动,因此应尽量保证cR/cQ稍大,上面的测试结果该值在1e4以上数据较为平滑。

 

转载自:https://www.cnblogs.com/jcchen1987/p/4371439.html


http://chatgpt.dhexx.cn/article/tumTacN5.shtml

相关文章

卡尔曼滤波(Kalman Filtering)——(6)MATLAB仿真(保姆级)

MATLAB仿真 一、卡尔曼滤波的实际应用二、流程图三、执行过程四、程序代码五、仿真结果参考文献 一、卡尔曼滤波的实际应用 在这里依旧以前面提到的测量硬币为例进行MATLAB仿真。现有一枚硬币为了这枚硬币的直径,我们进行了多次测量,但是所使用的的尺子存…

Kalman Filter 遇到 Deep Learning : 卡尔曼滤波和深度学习有关的论文

突然心血来潮,想到卡尔曼滤波器是否能和深度学习结合。于是从谷歌学术上搜了一下,发现现在这方面的工作还没有太多结合。Top 期刊 TNNLS 2021 有一篇最新工作。ICLR 2020 出现一篇 Kalman Filter Is All You Need 的文章,但目前从开源的审稿意…

目标跟踪:卡尔曼滤波(Kalman Filter)到底是怎么工作的?

Kalman filter到底是怎么工作的? 本文主要参考的文章:https://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/,图片也基本来自上述博客 其实接触KF已经很久了,听过对应的课程,也对着公式进行过推导&#x…

卡尔曼滤波(kalman)

卡尔曼(kalman)滤波原理 kalman滤波器可以看做状态变量在由观测生成的线性空间上的射影。 如下状态空间模型描述的动态系统: (1) ​​​​​​​ ​​​​​​​ (2) 式中,k为离散时间&#xff…

卡尔曼滤波(Kalman filter)及预测

参考文章:https://blog.csdn.net/baidu_38172402/article/details/82289998; https://www.jianshu.com/p/2768642e3abf kalman滤波的作用:1.数据 滤波;2.数据预测 3.数据融合。其基本原理:是通过协方差 来进行加权。 1.什么是…

【Kalman】卡尔曼滤波Matlab简单实现

本节卡尔曼滤波Matlab实现是针对线性系统估计的,仅为简单仿真。 1.离散时间线性动态系统的状态方程 线性系统采用状态方程、观测方程及其初始条件来描述。线性离散时间系统的一般状态方程可描述为 其中,X(k) 是 k 时刻目标的状态向量,V(k)…

学习OpenCV——Kalman滤波

背景: 卡尔曼滤波是一种高效率的递归滤波器(自回归滤波器), 它能够从一系列的不完全及包含噪声的测量中,估计动态系统的状态。卡尔曼滤波的一个典型实例是从一组有限的,包含噪声的,对物体位置的观察序列(可能有偏差&a…

卡尔曼滤波Kalman Filtering:介绍

本文是Quantitative Methods and Analysis: Pairs Trading此书的读书笔记。 控制理论(control theory)是工程学的分支之一,主要应对工程系统控制的问题。比如控制汽车发动机的功率输出,稳定电动机的转速,控制“反应速率”&#x…

kalman 滤波 演示与opencv代码

在机器视觉中追踪时常会用到预测算法,kalman是你一定知道的。它可以用来预测各种状态,比如说位置,速度等。关于它的理论有很多很好的文献可以参考。opencv给出了kalman filter的一个实现,而且有范例,但估计不少人对它的…

Ensemble Kalman filter集合卡尔曼滤波

在气象预测领域,很多时候,模型具有 O ( 10 e 8 ) O(10e8) O(10e8)以上的量级,如果使用传统的卡尔曼滤波,协方差矩阵的更新将是一个~ 10 e 22 10e22 10e22量级的计算操作,因此传统的卡尔曼滤波并不适用。集合卡尔曼滤波…

Kalman滤波MATLAB实现实例——在温度测量中的应用

参考:《卡尔曼滤波原理及应用MATLAB仿真》 原理介绍 假设我们要研究的对象是一个房间的温度。根据经验判断,这个房间的温度大概在25℃左右,可能受空气流通、阳光等因素影响,房间内温度会小幅度地波动。我们以分钟为单位,定时测量房间温度,这里的1分钟,可以理解为采…

图解卡尔曼滤波(Kalman Filter)

背景 关于滤波 首先援引来自知乎大神的解释。 “一位专业课的教授给我们上课的时候,曾谈到:filtering is weighting(滤波即加权)。滤波的作用就是给不同的信号分量不同的权重。最简单的loss pass filter, 就是直接把低…

卡尔曼滤波(Kalman Filter)原理理解和测试

Kalman Filter学原理学习 1. Kalman Filter 历史 Kalman滤波器的历史,最早要追溯到17世纪,Roger Cotes开始研究最小均方问题。但由于缺少实际案例的支撑(那个时候哪来那么多雷达啊啥的这些信号啊),Cotes的研究让人看着显得很模糊,因此在估计理论的发展中影响很小。17世纪…

Kaplan-Meier

Kaplan-Meier 算法 Kaplan-Meier,是一种生存分析的常用方法,用于研究某一个因素对于生存时间的影响。在医学广泛使用,比如新药物是否有效的增加癌症病人的存活时间。 计算方法:假设我们已经计算出了时间t1的生存概率是0.95&#…

Kalman滤波器从原理到实现

转载请注明出处:http://xiahouzuoxin.github.io/notes Kalman滤波器的历史渊源 We are like dwarfs on the shoulders of giants, by whose grace we see farther than they. Our study of the works of the ancients enables us to give fresh life to their finer…

Kalman Filter 通俗讲解

引言 Kalman Filter,很多人刚听到这个名词时,总是会下意识认为这就是个滤波器。我这里想要重点声明的是,Kalman Filter不是滤波,它是一种信息融合的过程。 那么Kalman Filter到底是什么?它在那些方面有着应用&#xf…

卡尔曼(kalman)详解

Kalmanfliter [TOC](Kalmanfliter) kalman详解贝叶斯准则(Bayes rule)全概率定理贝叶斯卡尔曼matlab仿真 kalman详解 贝叶斯准则(Bayes rule) 全概率定理 两个随机变量 X 和 Y 的联合分布(joint distribution)如下: p (x , y) p (X x , Y y)(Xx,Yy同…

kalman简单例子——初始化参数对kalman性能的影响

此篇为第⑤篇,多目标跟踪系列文章: 基础demor入门①②;公式推导③④;深入分析初始化参数的影响⑤; ① Matlab Kalman滤波例子——小球跟踪解析 :matlab官方例子,单目标跟踪。匀速模型和匀加速模型 ②Matlab Kalman Filter based Multiple object Tracking 官方例子 多目…

卡尔曼(kalman)滤波器原理

引言:卡尔曼滤波器适用于线性高斯系统,若为非线性系统,可以使用扩展卡尔曼滤波器。 一、状态估算器 如下图,如果我们需要知道火箭发射时尾部内部的实际温度,这个温度与火箭的燃料输入有关。但是由于里面温度过高&…

Kalman详尽原理介绍合集

目录 前言 1.线性kalman(LKF) 1.1LKF原理简介 1.2 适用场合 2.扩展kalman(EKF) 2.1EKF原理简介 2.2 适用场合 2.3 使用注意事项 3.无迹kalman(UKF) 3.1UKF原理简介 3.2 UT变换 3.3 适用场合 4.粒子滤波PF 4.1 PF原理简介 4.2 适用场合 前…