学习OpenCV——Kalman滤波

article/2025/10/5 19:39:29

背景:

卡尔曼滤波是一种高效率的递归滤波器(自回归滤波器), 它能够从一系列的不完全及包含噪声测量中,估计动态系统的状态。卡尔曼滤波的一个典型实例是从一组有限的,包含噪声的,对物体位置的观察序列(可能有偏差)预测出物体的位置的坐标速度

这种滤波方法以它的发明者鲁道夫.E.卡尔曼(Rudolph E. Kalman)命名,但是根据文献可知实际上Peter Swerling在更早之前就提出了一种类似的算法。

斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑便使用了这种滤波器。 关于这种滤波器的论文由Swerling (1958)、Kalman (1960)与 Kalman and Bucy (1961)发表。

目前,卡尔曼滤波已经有很多不同的实现.卡尔曼最初提出的形式现在一般称为简单卡尔曼滤波器。除此以外,还有施密特扩展滤波器、信息滤波器以及很多Bierman, Thornton 开发的平方根滤波器的变种。也许最常见的卡尔曼滤波器是锁相环,它在收音机、计算机和几乎任何视频或通讯设备中广泛存在。


模型:

基本动态系统模型:

卡尔曼滤波建立在线性代数隐马尔可夫模型(hidden Markov model)上。其基本动态系统可以用一个马尔可夫链表示,该马尔可夫链建立在一个被高斯噪声(即正态分布的噪声)干扰的线性算子上的。系统的状态可以用一个元素为实数的向量表示。 随着离散时间的每一个增加,这个线性算子就会作用在当前状态上,产生一个新的状态,并也会带入一些噪声,同时系统的一些已知的控制器的控制信息也会被加入。同时,另一个受噪声干扰的线性算子产生出这些隐含状态的可见输出。

模型图:

                                                    

为了从一系列有噪声的观察数据中用卡尔曼滤波器估计出被观察过程的内部状态,我们必须把这个过程在卡尔曼滤波的框架下建立模型。也就是说对于每一步k,定义矩阵

例如:KalmanFilter KF(stateNum, measureNum, 0);

F: KF.transitionMatrix

HKF.measurementMatrix

Qk : KF.processNoiseCov

R: KF.measurementNoiseCov

Pk : KF.errorCovPost

有时也需要定义Bk : KF.ontrolMatrix

如下。

尔曼滤波模型假设k时刻的真实状态是从(k − 1)时刻的状态演化而来,符合下式:

            \textbf{x}_{k} = \textbf{F}_{k} \textbf{x}_{k-1} + \textbf{B}_{k}\textbf{u}_{k}  + \textbf{w}_{k}

其中

  • Fk 是作用在xk−1上的状态变换模型(/矩阵/矢量)。 
  • Bk 是作用在控制器向量uk上的输入-控制模型。 
  • wk 是过程噪声,并假定其符合均值为零,协方差矩阵Qk多元正态分布
\textbf{w}_{k} \sim N(0, \textbf{Q}_k)

时刻k,对真实状态 xk的一个测量zk满足下式:

            \textbf{z}_{k} = \textbf{H}_{k} \textbf{x}_{k} + \textbf{v}_{k}

其中Hk是观测模型,它把真实状态空间映射成观测空间,vk 是观测噪声,其均值为零,协方差矩阵为Rk,且服从正态分布

\textbf{v}_{k} \sim N(0, \textbf{R}_k)

初始状态以及每一时刻的噪声{x0, w1, ..., wk, v1 ...vk} 都认为是互相独立的.

卡尔曼滤波器:

卡尔曼滤波是一种递归的估计,即只要获知上一时刻状态的估计值以及当前状态的观测值就可以计算出当前状态的估计值,因此不需要记录观测或者估计的历史信息。卡尔曼滤波器与大多数滤波器不同之处,在于它是一种纯粹的时域滤波器,它不需要像低通滤波器频域滤波器那样,需要在频域设计再转换到时域实现。

卡尔曼滤波器的状态由以下两个变量表示:

  • \hat{\textbf{x}}_{k|k},在时刻k 的状态的估计;
  • \textbf{P}_{k|k},误差相关矩阵,度量估计值的精确程度。

卡尔曼滤波器的操作包括两个阶段:预测更新。在预测阶段,滤波器使用上一状态的估计,做出对当前状态的估计。在更新阶段,滤波器利用对当前状态的观测值优化在预测阶段获得的预测值,以获得一个更精确的新估计值。

预测 predict:      Mat prediction = KF.predict();

\hat{\textbf{x}}_{k|k-1} = \textbf{F}_{k}\hat{\textbf{x}}_{k-1|k-1} + \textbf{B}_{k} \textbf{u}_{k} (预测状态)
\textbf{P}_{k|k-1} =  \textbf{F}_{k} \textbf{P}_{k-1|k-1} \textbf{F}_{k}^{T} + \textbf{Q}_{k} (预测估计协方差矩阵)

可参考:http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf

更新 updata:     KF.correct(measurement);

\tilde{\textbf{y}}_{k} = \textbf{z}_{k} - \textbf{H}_{k}\hat{\textbf{x}}_{k|k-1} (测量余量,measurement residual)
\textbf{S}_{k} = \textbf{H}_{k}\textbf{P}_{k|k-1}\textbf{H}_{k}^{T} + \textbf{R}_{k} (测量余量协方差)
\textbf{K}_{k} = \textbf{P}_{k|k-1}\textbf{H}_{k}^{T}\textbf{S}_{k}^{-1} (最优卡尔曼增益)
\hat{\textbf{x}}_{k|k} = \hat{\textbf{x}}_{k|k-1} + \textbf{K}_{k}\tilde{\textbf{y}}_{k} (更新的状态估计)
\textbf{P}_{k|k} = (I - \textbf{K}_{k} \textbf{H}_{k}) \textbf{P}_{k|k-1} (更新的协方差估计)

使用上述公式计算\textbf{P}_{k|k} 仅在最优卡尔曼增益的时候有效。使用其他增益的话,公式要复杂一些,请参见推导

不变量(Invariant)

如果模型准确,而且\hat{\textbf{x}}_{0|0}\textbf{P}_{0|0} 的值准确的反映了最初状态的分布,那么以下不变量就保持不变:所有估计的误差均值为零

  • \textrm{E}[\textbf{x}_k - \hat{\textbf{x}}_{k|k}] = \textrm{E}[\textbf{x}_k - \hat{\textbf{x}}_{k|k-1}] = 0
  • \textrm{E}[\tilde{\textbf{y}}_k] = 0

协方差矩阵 准确的反映了估计的协方差:

  • \textbf{P}_{k|k} = \textrm{cov}(\textbf{x}_k - \hat{\textbf{x}}_{k|k})
  • \textbf{P}_{k|k-1} = \textrm{cov}(\textbf{x}_k - \hat{\textbf{x}}_{k|k-1})
  • \textbf{S}_{k} = \textrm{cov}(\tilde{\textbf{y}}_k)

请注意,其中\textrm{E}[\textbf{a}]表示{a}的期望值,\textrm{cov}(\textbf{a}) = \textrm{E}[\textbf{a}\textbf{a}^T]

 


 

代码:

class Kalman:

class CV_EXPORTS_W KalmanFilter
{
public:
//! the default constructor
CV_WRAP KalmanFilter();
//! the full constructor taking the dimensionality of the state, of the measurement and of the control vector
CV_WRAP KalmanFilter(int dynamParams, int measureParams, int controlParams=0, int type=CV_32F);
//! re-initializes Kalman filter. The previous content is destroyed.
void init(int dynamParams, int measureParams, int controlParams=0, int type=CV_32F);
//! computes predicted state
CV_WRAP const Mat& predict(const Mat& control=Mat());
//! updates the predicted state from the measurement
CV_WRAP const Mat& correct(const Mat& measurement);
Mat statePre;           //!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
Mat statePost;          //!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
Mat transitionMatrix;   //!< state transition matrix (A)
Mat controlMatrix;      //!< control matrix (B) (not used if there is no control)
Mat measurementMatrix;  //!< measurement matrix (H)
Mat processNoiseCov;    //!< process noise covariance matrix (Q)
Mat measurementNoiseCov;//!< measurement noise covariance matrix (R)
Mat errorCovPre;        //!< priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/
Mat gain;               //!< Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
Mat errorCovPost;       //!< posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
// temporary matrices
Mat temp1;
Mat temp2;
Mat temp3;
Mat temp4;
Mat temp5;
};


sample\kalman.cpp

1个1维点的运动跟踪,虽然这个点是在2维平面中运动,但由于它是在一个圆弧上运动,只有一个自由度,角度,所以还是1维的。还是一个匀速运动,建立匀速运动模型,设定状态变量x = [ x1, x2 ] = [ 角度,角速度 ]

  

#include "opencv2/video/tracking.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdio.h>
using namespace cv;
static inline Point calcPoint(Point2f center, double R, double angle)
{
return center + Point2f((float)cos(angle), (float)-sin(angle))*(float)R;
}
void help()
{
printf( "\nExamle of c calls to OpenCV's Kalman filter.\n"
"   Tracking of rotating point.\n"
"   Rotation speed is constant.\n"
"   Both state and measurements vectors are 1D (a point angle),\n"
"   Measurement is the real point angle + gaussian noise.\n"
"   The real and the estimated points are connected with yellow line segment,\n"
"   the real and the measured points are connected with red line segment.\n"
"   (if Kalman filter works correctly,\n"
"    the yellow segment should be shorter than the red one).\n"
"\n"
"   Pressing any key (except ESC) will reset the tracking with a different speed.\n"
"   Pressing ESC will stop the program.\n"
);
}
int main(int, char**)
{
help();
Mat img(500, 500, CV_8UC3);
KalmanFilter KF(2, 1, 0);
Mat state(2, 1, CV_32F); /* (phi, delta_phi) */
Mat processNoise(2, 1, CV_32F);
Mat measurement = Mat::zeros(1, 1, CV_32F);
char code = (char)-1;
for(;;)
{
randn( state, Scalar::all(0), Scalar::all(0.1) );//随机生成一个矩阵,期望是0,标准差为0.1;
KF.transitionMatrix = *(Mat_<float>(2, 2) << 1, 1, 0, 1);//元素导入矩阵,按行;
//setIdentity: 缩放的单位对角矩阵;
//!< measurement matrix (H) 观测模型
setIdentity(KF.measurementMatrix);
//!< process noise covariance matrix (Q)
// wk 是过程噪声,并假定其符合均值为零,协方差矩阵为Qk(Q)的多元正态分布;
setIdentity(KF.processNoiseCov, Scalar::all(1e-5));
//!< measurement noise covariance matrix (R)
//vk 是观测噪声,其均值为零,协方差矩阵为Rk,且服从正态分布;
setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1));
//!< priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/  A代表F: transitionMatrix
//预测估计协方差矩阵;
setIdentity(KF.errorCovPost, Scalar::all(1));
//!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
randn(KF.statePost, Scalar::all(0), Scalar::all(0.1));
for(;;)
{
Point2f center(img.cols*0.5f, img.rows*0.5f);
float R = img.cols/3.f;
double stateAngle = state.at<float>(0);
Point statePt = calcPoint(center, R, stateAngle);
Mat prediction = KF.predict();
double predictAngle = prediction.at<float>(0);
Point predictPt = calcPoint(center, R, predictAngle);
randn( measurement, Scalar::all(0), Scalar::all(KF.measurementNoiseCov.at<float>(0)));
// generate measurement
measurement += KF.measurementMatrix*state;
double measAngle = measurement.at<float>(0);
Point measPt = calcPoint(center, R, measAngle);
// plot points
#define drawCross( center, color, d )                                 \
line( img, Point( center.x - d, center.y - d ),                \
Point( center.x + d, center.y + d ), color, 1, CV_AA, 0); \
line( img, Point( center.x + d, center.y - d ),                \
Point( center.x - d, center.y + d ), color, 1, CV_AA, 0 )
img = Scalar::all(0);
drawCross( statePt, Scalar(255,255,255), 3 );
drawCross( measPt, Scalar(0,0,255), 3 );
drawCross( predictPt, Scalar(0,255,0), 3 );
//line( img, statePt, measPt, Scalar(0,0,255), 3, CV_AA, 0 );
//line( img, statePt, predictPt, Scalar(0,255,255), 3, CV_AA, 0 );
KF.correct(measurement);
randn( processNoise, Scalar(0), Scalar::all(sqrt(KF.processNoiseCov.at<float>(0, 0))));
state = KF.transitionMatrix*state + processNoise;
imshow( "Kalman", img );
code = (char)waitKey(100);
if( code > 0 )
break;
}
if( code == 27 || code == 'q' || code == 'Q' )
break;
}
return 0;
}

鼠标跟踪(详解):

1.初始化状态:

onst int stateNum=4;//状态数,包括(x,y,dx,dy)坐标及速度(每次移动的距离)

const int measureNum=2;//观测量,能看到的是坐标值,当然也可以自己计算速度,但没必要

转移矩阵或者说增益矩阵的值好像有点莫名其妙

看下图就清楚了

X1=X+dx,依次类推
所以这个矩阵还是很容易却确定的,可以根据自己的实际情况定制转移矩阵

同样的方法,三维坐标的转移矩阵可以如下

当然并不一定得是1和0

 

 

KalmanFilter KF(stateNum, measureNum, 0);

//KalmanFilter::KalmanFilter(intdynamParams, intmeasureParams, int controlParams=0, inttype=CV_32F)

Parameters:
  • dynamParams – Dimensionality of the state.
  • measureParams – Dimensionality of the measurement.
  • controlParams – Dimensionality of the control vector.
  • type – Type of the created matrices that should beCV_32F orCV_64F.

 

Mat state (stateNum, 1, CV_32FC1);         //  state(x,y,detaX,detaY)

Mat processNoise(stateNum, 1, CV_32F); //  processNoise(x,y,detaX,detaY)

Mat measurement = Mat::zeros(measureNum, 1, CV_32F); //measurement(x,y)

 

需定义的参数矩阵:

F: KF.transitionMatrix

 KF.transitionMatrix = *(Mat_<float>(2, 2) << 1, 0, 1, 0......);


HKF.measurementMatrix:

setIdentity(KF.measurementMatrix);


Qk : KF.processNoiseCov

setIdentity(KF.processNoiseCov, Scalar::all(1e-5));

R: KF.measurementNoiseCov

setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1));

Pk : KF.errorCovPost

setIdentity(KF.errorCovPost, Scalar::all(1));


注意:其中: KF.transitionMatrix  

                                         (1,0,1,0, 
                                          0,1,0,1,
                                          0,0,1,0,
                                          0,0,0,1 );

 

2.预测predict,读出预测的位置
3.更新updata

   3.1.更新观测矩阵:updata/generate measurement

  • 对于鼠标跟踪:直接使用鼠标的实际位置更新,真实位置即为观测位置
  • 对于自动更新:
                randn( measurement, Scalar::all(0), Scalar::all(KF.measurementNoiseCov.at<float>(0)));
    // generate measurement
    measurement += KF.measurementMatrix*state;

    3.2.更新KF:KF.correct(measurement);

 

分别显示前一状态的位置:Point statePt = Point( (int)KF.statePost.at<float>(0), (int)KF.statePost.at<float>(1));;

预测位置:Point predictPt = Point( (int)prediction.at<float>(0), (int)prediction.at<float>(1));

观测位置(真实位置):mousePosition(由setMouseCallback("Kalman", mouseEvent);得到,递归方式通过measurement计算得到)

 

#include <opencv/cv.h>
#include <opencv/highgui.h>
#include <iostream>
using namespace cv;
using namespace std;
const int winWidth = 800;
const int winHeight = 600;
Point mousePosition = Point(winWidth>>1, winHeight>>1);
//mouse call back
void mouseEvent(int event, int x, int y, int flags, void *param)
{
if(event==CV_EVENT_MOUSEMOVE)
{
mousePosition=Point(x,y);
}
}
int main()
{
//1.kalman filter setup   
const int stateNum=4;  
const int measureNum=2;  
KalmanFilter KF(stateNum, measureNum, 0);
Mat state (stateNum, 1, CV_32FC1); //state(x,y,detaX,detaY)
Mat processNoise(stateNum, 1, CV_32F);
Mat measurement = Mat::zeros(measureNum, 1, CV_32F);	//measurement(x,y)
randn( state, Scalar::all(0), Scalar::all(0.1) ); //随机生成一个矩阵,期望是0,标准差为0.1;
KF.transitionMatrix = *(Mat_<float>(4, 4) << 
1,0,1,0, 
0,1,0,1, 
0,0,1,0, 
0,0,0,1 );//元素导入矩阵,按行;
//setIdentity: 缩放的单位对角矩阵;
//!< measurement matrix (H) 观测模型
setIdentity(KF.measurementMatrix);
//!< process noise covariance matrix (Q)
// wk 是过程噪声,并假定其符合均值为零,协方差矩阵为Qk(Q)的多元正态分布;
setIdentity(KF.processNoiseCov, Scalar::all(1e-5));
//!< measurement noise covariance matrix (R)
//vk 是观测噪声,其均值为零,协方差矩阵为Rk,且服从正态分布;
setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1));
//!< priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/  A代表F: transitionMatrix
//预测估计协方差矩阵;
setIdentity(KF.errorCovPost, Scalar::all(1));
//!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
//initialize post state of kalman filter at random 
randn(KF.statePost, Scalar::all(0), Scalar::all(0.1));
Mat showImg(winWidth, winHeight,CV_8UC3);
for(;;)
{
setMouseCallback("Kalman", mouseEvent);
showImg.setTo(0);
Point statePt = Point( (int)KF.statePost.at<float>(0), (int)KF.statePost.at<float>(1));
//2.kalman prediction   
Mat prediction = KF.predict();
Point predictPt = Point( (int)prediction.at<float>(0), (int)prediction.at<float>(1));
//3.update measurement
measurement.at<float>(0)= (float)mousePosition.x;
measurement.at<float>(1) = (float)mousePosition.y;
//4.update
KF.correct(measurement);
//randn( processNoise, Scalar(0), Scalar::all(sqrt(KF.processNoiseCov.at<float>(0, 0))));
//state = KF.transitionMatrix*state + processNoise;
//draw
circle(showImg, statePt, 5, CV_RGB(255,0,0),1);//former point
circle(showImg, predictPt, 5, CV_RGB(0,255,0),1);//predict point
circle(showImg, mousePosition, 5, CV_RGB(0,0,255),1);//ture point
// 			CvFont font;//字体
// 			cvInitFont(&font, CV_FONT_HERSHEY_SCRIPT_COMPLEX, 0.5f, 0.5f, 0, 1, 8);
putText(showImg, "Red: Former Point", cvPoint(10,30), FONT_HERSHEY_SIMPLEX, 1 ,Scalar :: all(255));
putText(showImg, "Green: Predict Point", cvPoint(10,60), FONT_HERSHEY_SIMPLEX, 1 ,Scalar :: all(255));
putText(showImg, "Blue: Ture Point", cvPoint(10,90), FONT_HERSHEY_SIMPLEX, 1 ,Scalar :: all(255));
imshow( "Kalman", showImg );
int key = waitKey(3);
if (key == 27)
{
break;
}
}
}

主要资料:

1.维基百科:http://en.wikipedia.org/wiki/Kalman_filter(英文)

    中文:http://zh.wikipedia.org/wiki/%E5%8D%A1%E5%B0%94%E6%9B%BC%E6%BB%A4%E6%B3%A2#.E5.8D.A1.E5.B0.94.E6.9B.BC.E6.BB.A4.E6.B3.A2.E5.99.A8

2.OpenCV文档:http://docs.opencv.org/modules/video/doc/motion_analysis_and_object_tracking.html?highlight=kalman#kalmanfilter

3.博客园kalman详解blog:http://www.cnblogs.com/feisky/archive/2009/12/04/1617287.html

4.CSDN kalman.cpp讲解yangxian:http://blog.csdn.net/yang_xian521/article/details/7050398

5.CSDN 鼠标跟踪:http://blog.csdn.net/onezeros/article/details/6318944

6.模型论文:http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf
 


http://chatgpt.dhexx.cn/article/Im1ii8Ae.shtml

相关文章

卡尔曼滤波Kalman Filtering:介绍

本文是Quantitative Methods and Analysis: Pairs Trading此书的读书笔记。 控制理论(control theory&#xff09;是工程学的分支之一&#xff0c;主要应对工程系统控制的问题。比如控制汽车发动机的功率输出&#xff0c;稳定电动机的转速&#xff0c;控制“反应速率”&#x…

kalman 滤波 演示与opencv代码

在机器视觉中追踪时常会用到预测算法&#xff0c;kalman是你一定知道的。它可以用来预测各种状态&#xff0c;比如说位置&#xff0c;速度等。关于它的理论有很多很好的文献可以参考。opencv给出了kalman filter的一个实现&#xff0c;而且有范例&#xff0c;但估计不少人对它的…

Ensemble Kalman filter集合卡尔曼滤波

在气象预测领域&#xff0c;很多时候&#xff0c;模型具有 O ( 10 e 8 ) O(10e8) O(10e8)以上的量级&#xff0c;如果使用传统的卡尔曼滤波&#xff0c;协方差矩阵的更新将是一个~ 10 e 22 10e22 10e22量级的计算操作&#xff0c;因此传统的卡尔曼滤波并不适用。集合卡尔曼滤波…

Kalman滤波MATLAB实现实例——在温度测量中的应用

参考&#xff1a;《卡尔曼滤波原理及应用MATLAB仿真》 原理介绍 假设我们要研究的对象是一个房间的温度。根据经验判断,这个房间的温度大概在25℃左右,可能受空气流通、阳光等因素影响,房间内温度会小幅度地波动。我们以分钟为单位,定时测量房间温度,这里的1分钟,可以理解为采…

图解卡尔曼滤波(Kalman Filter)

背景 关于滤波 首先援引来自知乎大神的解释。 “一位专业课的教授给我们上课的时候&#xff0c;曾谈到&#xff1a;filtering is weighting&#xff08;滤波即加权&#xff09;。滤波的作用就是给不同的信号分量不同的权重。最简单的loss pass filter&#xff0c; 就是直接把低…

卡尔曼滤波(Kalman Filter)原理理解和测试

Kalman Filter学原理学习 1. Kalman Filter 历史 Kalman滤波器的历史,最早要追溯到17世纪,Roger Cotes开始研究最小均方问题。但由于缺少实际案例的支撑(那个时候哪来那么多雷达啊啥的这些信号啊),Cotes的研究让人看着显得很模糊,因此在估计理论的发展中影响很小。17世纪…

Kaplan-Meier

Kaplan-Meier 算法 Kaplan-Meier&#xff0c;是一种生存分析的常用方法&#xff0c;用于研究某一个因素对于生存时间的影响。在医学广泛使用&#xff0c;比如新药物是否有效的增加癌症病人的存活时间。 计算方法&#xff1a;假设我们已经计算出了时间t1的生存概率是0.95&#…

Kalman滤波器从原理到实现

转载请注明出处&#xff1a;http://xiahouzuoxin.github.io/notes Kalman滤波器的历史渊源 We are like dwarfs on the shoulders of giants, by whose grace we see farther than they. Our study of the works of the ancients enables us to give fresh life to their finer…

Kalman Filter 通俗讲解

引言 Kalman Filter&#xff0c;很多人刚听到这个名词时&#xff0c;总是会下意识认为这就是个滤波器。我这里想要重点声明的是&#xff0c;Kalman Filter不是滤波&#xff0c;它是一种信息融合的过程。 那么Kalman Filter到底是什么&#xff1f;它在那些方面有着应用&#xf…

卡尔曼(kalman)详解

Kalmanfliter [TOC](Kalmanfliter) kalman详解贝叶斯准则(Bayes rule)全概率定理贝叶斯卡尔曼matlab仿真 kalman详解 贝叶斯准则(Bayes rule) 全概率定理 两个随机变量 X 和 Y 的联合分布(joint distribution)如下: p (x , y) p (X x , Y y)&#xff08;Xx&#xff0c;Yy同…

kalman简单例子——初始化参数对kalman性能的影响

此篇为第⑤篇,多目标跟踪系列文章: 基础demor入门①②;公式推导③④;深入分析初始化参数的影响⑤; ① Matlab Kalman滤波例子——小球跟踪解析 :matlab官方例子,单目标跟踪。匀速模型和匀加速模型 ②Matlab Kalman Filter based Multiple object Tracking 官方例子 多目…

卡尔曼(kalman)滤波器原理

引言&#xff1a;卡尔曼滤波器适用于线性高斯系统&#xff0c;若为非线性系统&#xff0c;可以使用扩展卡尔曼滤波器。 一、状态估算器 如下图&#xff0c;如果我们需要知道火箭发射时尾部内部的实际温度&#xff0c;这个温度与火箭的燃料输入有关。但是由于里面温度过高&…

Kalman详尽原理介绍合集

目录 前言 1.线性kalman(LKF) 1.1LKF原理简介 1.2 适用场合 2.扩展kalman(EKF) 2.1EKF原理简介 2.2 适用场合 2.3 使用注意事项 3.无迹kalman&#xff08;UKF&#xff09; 3.1UKF原理简介 3.2 UT变换 3.3 适用场合 4.粒子滤波PF 4.1 PF原理简介 4.2 适用场合 前…

对Kalman(卡尔曼)滤波器的理解

分类&#xff1a; 计算机视觉 转载过来的&#xff0c;觉得不错&#xff0c;原文 http://blog.csdn.net/lanbing510/article/details/8828109 1.简介(Brief Introduction) 在学习卡尔曼滤波器之前&#xff0c;首先看看为什么叫“卡尔曼”。跟其他著名的理论&#xff08;例如傅…

Kalman滤波通俗理解+实际应用

一、Kalman用于解决什么的问题&#xff1f; 卡尔曼滤波是一种利用线性系统状态方程&#xff0c;通过系统输入输出观测数据&#xff0c;对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响&#xff0c;所以最优估计也可看作是滤波过程。 人话&#xff1…

IDEA开发及运行第一个Android项目

IDEA自动下载SDK、Gradle&#xff0c;保证能访问网络。 原来eclipse能使用的sdk&#xff0c;配到idea报错&#xff0c;就换成自动下载最新的了。 之前没成功可能是我防火墙禁用了上网。 新建项目 提示安装SDK 等待下载完成 继续建项目 选择手机或平板及目标设备API版本 选择…

怎么导入别人的android项目

到期末了好多同学都问我怎么把别人的安卓项目导进自己电脑里面&#xff0c;今天我来统一解答一下&#xff0c;希望有所帮助。 1.删除项目中原有的自动构建的文件 去到要导入项目的目录下把 .idea .gradle与build 三个文件夹&#xff0c;*.iml&#xff0c;local.properties删除…

android 开源项目:

android 开源项目&#xff1a; https://github.com/white-cat/ThinkAndroid 转自&#xff1a;http://glblong.blog.51cto.com/3058613/1354953 Android开源&#xff1a;数据库ORM框架GreenDao学习心得及使用总结 2014-01-26 23:40:01 标签&#xff1a; sqllite Android 开源…

Android项目工程结构介绍

Android项目工程结构介绍 &#xff08;1&#xff09;gradle和.idea Android Studio自动生成的文件&#xff0c;打包的时候一般会删掉再进行打包 &#xff08;2&#xff09;app 项目的代码资源都在其中&#xff0c;也是我们工作的核心目录 build &#xff1a;编译生成文件。生…

Android项目如何真机运行?

很多初学者在刚开始写Android项目的时候&#xff0c;会使用Android Studio自带的模拟器去运行项目&#xff0c;但是自带模拟器一般占内存大&#xff08;占2G都算少的&#xff09;&#xff1b;运行慢&#xff08;运行一个项目要启动半天&#xff09;&#xff1b;卡顿等等&#x…