讲清楚embedding到底在干什么

article/2025/10/20 15:59:09

要搞清楚embeding先要弄明白他和one hot encoding的区别,以及他解决了什么one hot encoding不能解决的问题,带着这两个问题去思考,在看一个简单的计算例子

以下引用 YJango的Word Embedding–介绍
https://zhuanlan.zhihu.com/p/27830489

One hot representation
程序中编码单词的一个方法是one hot encoding。
实例:有1000个词汇量。排在第一个位置的代表英语中的冠词"a",那么这个"a"是用[1,0,0,0,0,…],只有第一个位置是1,其余位置都是0的1000维度的向量表示,如下图中的第一列所示。
在这里插入图片描述
也就是说,
在one hot representation编码的每个单词都是一个维度,彼此independent。

这里我们可以看到One hot方式处理的数据
1、会产生大量冗余的稀疏矩阵
2、维度(单词)间的关系,没有得到体现

继续引用

神经网络分析
假设我们的词汇只有4个,girl, woman, boy, man,下面就思考用两种不同的表达方式会有什么区别。
One hot representation
尽管我们知道他们彼此的关系,但是计算机并不知道。在神经网络的输入层中,每个单词都会被看作一个节点。 而我们知道训练神经网络就是要学习每个连接线的权重。如果只看第一层的权重,下面的情况需要确定43个连接线的关系,因为每个维度都彼此独立,girl的数据不会对其他单词的训练产生任何帮助,训练所需要的数据量,基本就固定在那里了。
在这里插入图片描述
Distributed representation
我们这里手动的寻找这四个单词之间的关系 f 。可以用两个节点去表示四个单词。每个节点取不同值时的意义如下表。 那么girl就可以被编码成向量[0,1],man可以被编码成[1,1](第一个维度是gender,第二个维度是age)。

那么这时再来看神经网络需要学习的连接线的权重就缩小到了2
3。同时,当送入girl为输入的训练数据时,因为它是由两个节点编码的。那么与girl共享相同连接的其他输入例子也可以被训练到(如可以帮助到与其共享female的woman,和child的boy的训练)。
在这里插入图片描述
Word embedding也就是要达到第二个神经网络所表示的结果,降低训练所需要的数据量。
Word embedding就是要从数据中自动学习到输入空间到Distributed representation空间的 映射f 。

以上的计算都没有涉及到label,所以训练过程是无监督的

看一个实际代码计算的例子

假设有一个维度为7的稀疏向量[0,1,0,1,1,0,0]。你可以把它变成一个非稀疏的2d向量,如下所示:

model = Sequential()
model.add(Embedding(2, 2, input_length=7))#输入维,输出维
model.compile('rmsprop', 'mse')
model.predict(np.array([[0,1,0,1,1,0,0]]))
array([[[ 0.03005414, -0.02224021],[ 0.03396987, -0.00576888],[ 0.03005414, -0.02224021],[ 0.03396987, -0.00576888],[ 0.03396987, -0.00576888],[ 0.03005414, -0.02224021],[ 0.03005414, -0.02224021]]], dtype=float32)

这个转换实际上是把[0,1,0,1,1,0,0]增加一个纵向展开的维度

model.layers[0].W.get_value()
array([[ 0.03005414, -0.02224021],[ 0.03396987, -0.00576888]], dtype=float32)

通过比较两个数组可以看出0值映射到第一个索引,1值映射到第二个索引。嵌入构造函数的第一个值是输入中的值范围。在示例中它是2,因为我们给出了二进制向量作为输入。第二个值是目标维度。第三个是我们给出的向量的长度。
所以,这里没有什么神奇之处,只是从整数到浮点数的映射。

计算例子的model.layers[0].W.get_value(),就是上面引用图示中的映射f


http://chatgpt.dhexx.cn/article/pK1iK4jF.shtml

相关文章

一文读懂Embedding

文章目录 一、**什么是Embedding?**二、One-Hot编码三、**怎么理解Embedding****四、Word Embedding** 一、什么是Embedding? “Embedding”直译是嵌入式、嵌入层。 简单来说,我们常见的地图就是对于现实地理的Embedding,现实的…

Embedding的理解

Embedding 嵌入,我们可以将其理解为一种降维行为。可以将高维数据映射到低维空间来解决稀疏输入数据的问题。 它主要有以下三个目的: 在 embedding 空间中查找最近邻,这可以很好的用于根据用户的兴趣来进行推荐。作为监督性学习任务的输…

BERT的三个Embedding详解

BERT将输入文本中的每一个词(token)送入token embedding层从而将每一个词转换成向量形式 两个嵌入层,segment embeddings和 position embeddings token embedding token embedding 层是要将各个词转换成固定维度的向量。在BERT中,每个词会被…

Embedding层的理解

Embedding层的理解 转载自:原文:深入理解 Embedding层的本质_罗小丰同学的博客-CSDN博客_embedding层 首先,我们有一个one-hot编码的概念。 假设,我们中文,一共只有10个字。。。只是假设啊,那么我们用0-…

Embedding理解与代码实现

Embedding 字面理解是 “嵌入”,实质是一种映射,从语义空间到向量空间的映射,同时尽可能在向量空间保持原样本在语义空间的关系,如语义接近的两个词汇在向量空间中的位置也比较接近。 下面以一个基于Keras的简单的文本情感分类问…

深度学习中Embedding层有什么用?

2019年03月24日15:23:32更新: 由于CSDN图片经常显示不出来,本文最新链接请点击:https://fuhailin.github.io/Embedding/ 博主所有博客写作平台已迁移至:https://fuhailin.github.io/ ,欢迎收藏关注。 这篇博客翻译自国…

pytorch nn.Embedding的用法和理解

(2021.05.26补充)nn.Embedding.from_pretrained()的使用: >>> # FloatTensor containing pretrained weights >>> weight torch.FloatTensor([[1, 2.3, 3], [4, 5.1, 6.3]]) >>> embedding nn.Embedding.from…

EMBEDDING层作用

embedding层作用:①降维②对低维的数据进行升维时,可能把一些其他特征给放大了,或者把笼统的特征给分开了。 Embedding其实就是一个映射,从原先所属的空间映射到新的多维空间中,也就是把原先所在空间嵌入到一个新的空…

彻底理解embedding

本文转载自https://blog.csdn.net/weixin_42078618/article/details/84553940,版权问题请联系博主删除 首先,我们有一个one-hot编码的概念。 假设,我们中文,一共只有10个字。。。只是假设啊,那么我们用0-9就可以表示…

深度学习中的embedding

整理翻译自google developer的机器学习入门课程,介绍了embedding的应用方式和如何计算embedding,后面还配有通过tensorflow DNN训练embedding练习加深理解。 分类输入数据(Categorical Input Data) 分类数据是指表示来自有限选择集的一个或多个离散项的…

【文本分类】深入理解embedding层的模型、结构与文本表示

[1] 名词理解 embedding层:嵌入层,神经网络结构中的一层,由embedding_size个神经元组成,[可调整的模型参数]。是input输入层的输出。 词嵌入:也就是word embedding…根据维基百科,被定义为自然语言处理NLP中…

用万字长文聊一聊 Embedding 技术

作者:qfan,腾讯 WXG 应用研究员 随着深度学习在工业届不断火热,Embedding 技术便作为“基本操作”广泛应用于推荐、广告、搜索等互联网核心领域中。Embedding 作为深度学习的热门研究方向,经历了从序列样本、图样本、再到异构的多…

Embedding技术

1、Embedding 是什么 Embedding是用一个低维稠密的向量来“表示”一个对象(这里的对象泛指一切可推荐的事物,比如商品、电影、音乐、新闻等),同时表示一词意味着Embedding能够表达相应对象的某些特征,同时向量之间的距…

什么是embedding?

本文转自:https://www.jianshu.com/p/6c977a9a53de    简单来说,embedding就是用一个低维的向量表示一个物体,可以是一个词,或是一个商品,或是一个电影等等。这个embedding向量的性质是能使距离相近的向量对应的物体…

Pairwise-ranking loss代码实现对比

Multi-label classification中Pairwise-ranking loss代码 定义 在多标签分类任务中,Pairwise-ranking loss中我们希望正标记的得分都比负标记的得分高,所以采用以下的形式作为损失函数。其中 c c_ c​是正标记, c − c_{-} c−​是负标记。…

【论文笔记】API-Net:Learning Attentive Pairwise Interaction for Fine-Grained Classification

API-Net 简介创新点mutual vector learning(互向量学习)gate vector generation(门向量生成器)pairwise interaction(成对交互) 队构造(Pair Construction)实验结果总结 简介 2020年…

白话点云dgcnn中的pairwise_distance

点云DGCNN中对于代码中pairwise_distance的分析与理解 2021年5月7日:已经勘误,请各位大佬不惜赐教。 一点一点读,相信我,我能讲清楚。 这个是本篇文章所要讨论的代码段 总体上把握,这个代码计算出了输入点云每对点之…

推荐系统[四]:精排-详解排序算法LTR (Learning to Rank): poitwise, pairwise, listwise相关评价指标,超详细知识指南。

搜索推荐系统专栏简介:搜索推荐全流程讲解(召回粗排精排重排混排)、系统架构、常见问题、算法项目实战总结、技术细节以及项目实战(含码源) 专栏详细介绍:搜索推荐系统专栏简介:搜索推荐全流程讲解(召回粗排精排重排混排)、系统架构、常见问题、算法项目实战总结、技术…

【torch】torch.pairwise_distance分析

every blog every motto: You can do more than you think. https://blog.csdn.net/weixin_39190382?typeblog 0. 前言 记录torch.pairwise_distance 1. 一维 1.1 元素个数相同 1.1.1 元素个数为1 生成代码: t torch.randn(1) f torch.randn(1)计算代码,下…

pairwise损失_triplet损失_提升精排模型的trick

01标签 import torch import torch.nn as nn# 输入x是一个二维张量,每一行表示一个样本的分数,每一列表示一个特征或维度 x torch.tensor([[0.5, 0.7], [0.9, 0.8], [0.6, 0.4], [0.3, 0.6], [0.8, 0.7], [0.4, 0.5]])# 标签y是一个一维张量&#xff0c…