BERT的三个Embedding详解

article/2025/10/20 15:45:58

BERT将输入文本中的每一个词(token)送入token embedding层从而将每一个词转换成向量形式

两个嵌入层,segment embeddings和 position embeddings

token embedding

token embedding 层是要将各个词转换成固定维度的向量。在BERT中,每个词会被转换成768维的向量表示

假设输入文本是 “I like strawberries”。下面这个图展示了 Token Embeddings 层的实现过程:

输入文本在送入token embeddings 层之前要先进行tokenization处理。此外,两个特殊的token会被插入到tokenization的结果的开头 ([CLS])和结尾 ([SEP]) 。它们视为后面的分类任务和划分句子对服务的

tokenization使用的方法是WordPiece tokenization. 这是一个数据驱动式的tokenization方法,旨在权衡词典大小和oov词的个数。这种方法把例子中的“strawberries”切分成了“straw” 和“berries”。这种方法的详细内容不在本文的范围内

Token Embeddings 层会将每一个wordpiece token转换成768维的向量。这样,例子中的6个token就被转换成了一个(6, 768) 的矩阵或者是(1, 6, 768)的张量(如果考虑batch_size的话)

segment embedding

BERT 能够处理对输入句子对的分类任务。这类任务就像判断两个文本是否是语义相似的。句子对中的两个句子被简单的拼接在一起后送入到模型中。那BERT如何去区分一个句子对中的两个句子呢?答案就是segment embeddings.

假设有这样一对句子 (“I like cats”, “I like dogs”)。下面的图成仙了segment embeddings如何帮助BERT区分两个句子:

Segment Embeddings 层只有两种向量表示。前一个向量是把0赋给第一个句子中的各个token, 后一个向量是把1赋给第二个句子中的各个token。如果输入仅仅只有一个句子,那么它的segment embedding就是全0 

position Embedding

Transformers无法编码输入的序列的顺序性,加入position embeddings会让BERT理解下面下面这种情况, I think, therefore I am,第一个 “I” 和第二个 “I”应该有着不同的向量表示

BERT能够处理最长512个token的输入序列。论文作者通过让BERT在各个位置上学习一个向量表示来讲序列顺序的信息编码进来。这意味着Position Embeddings layer 实际上就是一个大小为 (512, 768) 的lookup表,表的第一行是代表第一个序列的第一个位置,第二行代表序列的第二个位置,以此类推。因此,如果有这样两个句子“Hello world” 和“Hi there”, “Hello” 和“Hi”会由完全相同的position embeddings,因为他们都是句子的第一个词。同理,“world” 和“there”也会有相同的position embedding

我们已经介绍了长度为n的输入序列将获得的三种不同的向量表示,分别是:

  • Token Embeddings, (1, n, 768) ,词的向量表示
  • Segment Embeddings, (1, n, 768),辅助BERT区别句子对中的两个句子的向量表示
  • Position Embeddings ,(1, n, 768) ,让BERT学习到输入的顺序属性

这些表示会被按元素相加,得到一个大小为(1, n, 768)的合成表示。这一表示就是BERT编码层的输入了

reference

https://www.cnblogs.com/d0main/p/10447853.html

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding; Devlin et al. 2018.
Google’s Neural Machine Translation System: Briding the Gap between Human and Machine Translation; Wu et al. 2016
Japanese and Korean Voice Search; Schuster and Nakajima. 2012.
Attention Is All You Need; Vaswani et al. 2017.


http://chatgpt.dhexx.cn/article/byjLxpmB.shtml

相关文章

Embedding层的理解

Embedding层的理解 转载自:原文:深入理解 Embedding层的本质_罗小丰同学的博客-CSDN博客_embedding层 首先,我们有一个one-hot编码的概念。 假设,我们中文,一共只有10个字。。。只是假设啊,那么我们用0-…

Embedding理解与代码实现

Embedding 字面理解是 “嵌入”,实质是一种映射,从语义空间到向量空间的映射,同时尽可能在向量空间保持原样本在语义空间的关系,如语义接近的两个词汇在向量空间中的位置也比较接近。 下面以一个基于Keras的简单的文本情感分类问…

深度学习中Embedding层有什么用?

2019年03月24日15:23:32更新: 由于CSDN图片经常显示不出来,本文最新链接请点击:https://fuhailin.github.io/Embedding/ 博主所有博客写作平台已迁移至:https://fuhailin.github.io/ ,欢迎收藏关注。 这篇博客翻译自国…

pytorch nn.Embedding的用法和理解

(2021.05.26补充)nn.Embedding.from_pretrained()的使用: >>> # FloatTensor containing pretrained weights >>> weight torch.FloatTensor([[1, 2.3, 3], [4, 5.1, 6.3]]) >>> embedding nn.Embedding.from…

EMBEDDING层作用

embedding层作用:①降维②对低维的数据进行升维时,可能把一些其他特征给放大了,或者把笼统的特征给分开了。 Embedding其实就是一个映射,从原先所属的空间映射到新的多维空间中,也就是把原先所在空间嵌入到一个新的空…

彻底理解embedding

本文转载自https://blog.csdn.net/weixin_42078618/article/details/84553940,版权问题请联系博主删除 首先,我们有一个one-hot编码的概念。 假设,我们中文,一共只有10个字。。。只是假设啊,那么我们用0-9就可以表示…

深度学习中的embedding

整理翻译自google developer的机器学习入门课程,介绍了embedding的应用方式和如何计算embedding,后面还配有通过tensorflow DNN训练embedding练习加深理解。 分类输入数据(Categorical Input Data) 分类数据是指表示来自有限选择集的一个或多个离散项的…

【文本分类】深入理解embedding层的模型、结构与文本表示

[1] 名词理解 embedding层:嵌入层,神经网络结构中的一层,由embedding_size个神经元组成,[可调整的模型参数]。是input输入层的输出。 词嵌入:也就是word embedding…根据维基百科,被定义为自然语言处理NLP中…

用万字长文聊一聊 Embedding 技术

作者:qfan,腾讯 WXG 应用研究员 随着深度学习在工业届不断火热,Embedding 技术便作为“基本操作”广泛应用于推荐、广告、搜索等互联网核心领域中。Embedding 作为深度学习的热门研究方向,经历了从序列样本、图样本、再到异构的多…

Embedding技术

1、Embedding 是什么 Embedding是用一个低维稠密的向量来“表示”一个对象(这里的对象泛指一切可推荐的事物,比如商品、电影、音乐、新闻等),同时表示一词意味着Embedding能够表达相应对象的某些特征,同时向量之间的距…

什么是embedding?

本文转自:https://www.jianshu.com/p/6c977a9a53de    简单来说,embedding就是用一个低维的向量表示一个物体,可以是一个词,或是一个商品,或是一个电影等等。这个embedding向量的性质是能使距离相近的向量对应的物体…

Pairwise-ranking loss代码实现对比

Multi-label classification中Pairwise-ranking loss代码 定义 在多标签分类任务中,Pairwise-ranking loss中我们希望正标记的得分都比负标记的得分高,所以采用以下的形式作为损失函数。其中 c c_ c​是正标记, c − c_{-} c−​是负标记。…

【论文笔记】API-Net:Learning Attentive Pairwise Interaction for Fine-Grained Classification

API-Net 简介创新点mutual vector learning(互向量学习)gate vector generation(门向量生成器)pairwise interaction(成对交互) 队构造(Pair Construction)实验结果总结 简介 2020年…

白话点云dgcnn中的pairwise_distance

点云DGCNN中对于代码中pairwise_distance的分析与理解 2021年5月7日:已经勘误,请各位大佬不惜赐教。 一点一点读,相信我,我能讲清楚。 这个是本篇文章所要讨论的代码段 总体上把握,这个代码计算出了输入点云每对点之…

推荐系统[四]:精排-详解排序算法LTR (Learning to Rank): poitwise, pairwise, listwise相关评价指标,超详细知识指南。

搜索推荐系统专栏简介:搜索推荐全流程讲解(召回粗排精排重排混排)、系统架构、常见问题、算法项目实战总结、技术细节以及项目实战(含码源) 专栏详细介绍:搜索推荐系统专栏简介:搜索推荐全流程讲解(召回粗排精排重排混排)、系统架构、常见问题、算法项目实战总结、技术…

【torch】torch.pairwise_distance分析

every blog every motto: You can do more than you think. https://blog.csdn.net/weixin_39190382?typeblog 0. 前言 记录torch.pairwise_distance 1. 一维 1.1 元素个数相同 1.1.1 元素个数为1 生成代码: t torch.randn(1) f torch.randn(1)计算代码,下…

pairwise损失_triplet损失_提升精排模型的trick

01标签 import torch import torch.nn as nn# 输入x是一个二维张量,每一行表示一个样本的分数,每一列表示一个特征或维度 x torch.tensor([[0.5, 0.7], [0.9, 0.8], [0.6, 0.4], [0.3, 0.6], [0.8, 0.7], [0.4, 0.5]])# 标签y是一个一维张量&#xff0c…

LTR (Learning to Rank): 排序算法 poitwise, pairwise, listwise常见方案总结

目录 1 Learing to Rank介绍2 The Pointwise Approach3 The Pairwise Approach3.1 RankNet 4 The Listwise Approach4.1 直接优化评测指标4.1.1 LambdaRank4.1.2 LambdaMART 4.2 定义Listwise损失函数4.2.1 ListNet4.2.2 ListMLE 5 排序评估指标5.1 Mean Reciprocal Rank (MRR)…

【论文精读】Pairwise learning for medical image segmentation

Published in: Medical Image Analysis 2020 论文:https://www.sciencedirect.com/science/article/abs/pii/S1361841520302401 代码:https://github.com/renzhenwang/pairwise_segmentation 目录 Published in: Medical Image Analysis 2020 摘要 一…

pairwise相似度计算

做了一个比赛,其中为了更好的构建负样本,需要计算不同句子之间的相似性,句子大概有100w,句子向量是300维,中间踩了很多坑,记录一下。 暴力计算 最简单的idea是预分配一个100w x 100w的矩阵,一…