通俗理解核方法(kernel function)

article/2025/9/25 18:30:40

最近对核方法比较有兴趣,想了解一下,在网上查阅了很多资料,感觉说的很晦涩,没有理解,于是查看了李政轩老师的课程,对其有了一定程度上的理解,本博客目的为了记录,也为了加深理解。

附上李政轩老师课程的地址:http://www.powercam.cc/slide/6552

为什么将低维空间转化为高维空间:

首先通俗理解一下核函数存在的意义,按照其他一些官方上的解释,核函数就是为了将低维空间上的点映射到高维空间上,是为了方便将不能用线性分割的数据转化成可以线性分割的数据(白话解释),如图所示:


如图所示,左面的图为为原空间,右面的图为映射后的空间,从图中也可以看出来,左面图要用一个椭圆才能将两个类别分割开来,而右面的图要用一个超平面就可以分割开,也如图上的共识所示,原空间点左边为(x1,x2),经过某个函数或者某种计算方法,转化为特征空间上点坐标为(z1,z2,z3),所以我们之前的说法是正确的,将低维空间转化到高维空间大概率可以对其中的点进行线性分割。

这样,我们第一步就理解了,就是在低维空间上的点通过某一函数转化为高维空间上,更有助于线性分类。那么我们开始理解下一步。

内积的意义:

在核函数中,会涉及到两个点的内积的计算,本节主要论述计算内积的意义。

两个点之间的内积是有一定意义的,可以通过两个点的内积计算距离和两个向量之间的角度,计算方法如下所示:



其中的字符代表着一个点。而根据两个点的距离,夹角等信息可以得到某些模型的超平面计算,讨论完内积的意义,下节将着重讨论核函数的重点内容。

核函数:

由于我们原特征空间是线性不可分的,所以要将原特征空间中的点x经过函数,转化到高维特征空间上,理论来讲,将低维空间转化到高维空间上,计算复杂度会变高很多,但是由于核函数的引用,巧妙的解决了这个问题。

我们需要优化的函数如下:


其中c为正负两类样本点连线的中点。如图所示:


w = (c+) -(c-),为红色线的向量

本函数计算绿色的线和红色线向量夹角,如果大于90度属于负类,否则属于正类。


计算过程如下:


其中的k(x,x1),代表核函数,也就是高维空间两个点的内积。

所谓核函数,则是在原空间上两点内积的一个函数得到的,核函数样例如下所示:

将样本点从二维空间转化到三维空间:



从上述公式可以看出,核函数是一个可以用原特征空间上点内积的方式经过运算转化成高维空间点内积,而不必完全由高维空间上的点进行计算,从而达到降低运算复杂度的作用。


http://chatgpt.dhexx.cn/article/ctG4fEnO.shtml

相关文章

电机选型及校核方法总结

序:原先最初是没打算写电机选型总结的,而是准备写一些关于数字信号处理相关的东西,但是我的一个朋友提醒了我。他说,现在网上关于数字信号处理的东西写的太多了,特别是基础的知识都写烂了,你再写也没人看&a…

核方法与核技巧

本文对核方法(kernel method)进行简要的介绍。 核方法的主要思想是基于这样一个假设:“在低维空间中不能线性分割的点集,通过转化为高维空间中的点集时,很有可能变为线性可分的” ,例如下图 左图的两类数据…

机器学习中的核方法(Kernel Method)

说到机器学习中的核方法(Kernel Method),大部分人应该是在学习SVM的时候认识到它或者听说它。它的基本思想是说,普通的SVM分类超平面只能应对线性可分的情况,而对于线性不可分的情况我们则需要引入一个Kernel,这个Kernel可以把数据集从低维映射到高维,使得原来线性不可分…

支持向量机原理小结(3)——核方法和非线性支持向量机

前面两篇博客对线性支持向量机进行了详细的讲解,但线性SVM对于非线性的数据是无可奈何的。这篇博客将讲一下非线性支持向量机。 1. 核方法 对SVM有过一定耳闻的人,一定听说过“核技巧”、“核方法”这些名词,其实核方法并不是只能应用于SVM&…

核方法以及核函数讲解

核方法的主要思想是基于这样一个假设:“在低维空间中不能线性分割的点集,通过转化为高维空间中的点集时,很有可能变为线性可分的” ,例如下图 左图的两类数据要想在一维空间上线性分开是不可能的,然而通过F(x)(x-a)(x-…

MLAPP————第十四章 核方法

第十四章 核方法 14.1 简介 到目前为止,我们书上提到的各种方法,包括分类,聚类或者是其它的一些处理手段,我们的特征都是固定大小的一个向量,一般具有如下的形式,。然而,对于某些类型的对象&a…

核方法的理解

核方法在非线性分类问题上有很好的解决思路,应用于学习器SVM以及降维KPCA上,当然二者路径也不同,SVM就是从低维不可分映射到高维可分,而KPCA是从低维不可分映射到高维后再降维到低维可分,但都脱离不来这个核方法。 核…

核方法原理

核方法原理 1.无力的线性分类器 一般情况下,我们考虑构造一个线性分类器来解决问题。但是实际中,线性分类器的效果达不到要求,因为大部分数据都不是线性可分的,如下面这幅图。一种改进的方法是把多个弱的线性分类器组合得到一个强…

核方法(kernel method)的主要思想

kernel method是针对低维线性不可分而提出的一种解决方法,在PRML中有一章节的介绍,对其理解,也是迭代更进的过程。 简单来说,kernel method是一种低维和高维特征空间映射的方法,利用低维内积的函数来表征高维内积&…

python svm核函数_Python.SVM(三)核方法

Python.SVM(三)核方法 1 什么是核方法 往简单里说,核方法是将一个低维的线性不可分的数据映射到一个高维的空间、并期望映射后的数据在高维空间里是线性可分的。 我们以异或数据集为例:在二维空间中、异或数据集是线性不可分的;但是通过将其映…

核方法回归

参考论文-DENSITY ESTIMATION FOR STATISTICS AND DATA ANALYSIS 给定数据集,来估计概率密度函数 Histograms The naive estimator 也是分成段的平行x轴直线连接起来 The kernel estimator 其中kernel可以是高斯核,结果图: 可以见到,高斯核…

【机器学习】SVM核方法

https://blog.csdn.net/qq_32742009/article/details/81430534 Kernel Trick 在 SVM 中引入核方法便可使得 SVM 变为非线性分类器,给定非线性可分数据集 ,如下图所示,此时找不到一个分类平面来将数据分开,核方法可以将数据投影到…

核函数与核方法整理

一些之前提到过的知识, 对核函数相关进行详细梳理和串联. 根据胡老师建议的重点, 学习了一下: 核函数公式,作用,选择, 调参, 如何简化运算 目录 SVM回顾 严格线性可分问题 近似线性可分 核函数 什么是核函数 如何使用核函数 为什么要用核函数 …

核方法也称为核技巧(Kernel method)

简介 核函数是干嘛的? 核方法的好处#套用ice110956的说法 1. 在线性与非线性间架起一座桥梁,低维空间里面数据特征是非线性的,没法儿用线性方法解决,当数据特征映射到高维的时候,可以用线性方法解决。 2. 通…

Kernel Method核方法—应用与理解

前一篇主要梳理了几个基本概念以及相关关系,这一篇主要针对核方法的应用进行讨论,并理解核方法的思想,了解为什么要引入核方法。 核方法在机器学习中是一种灵活的技术,主要归结为两个方面: 非线性问题转换为高维线性…

核方法学习

20201101 - 0. 引言 核方法(kernel methods,核函数、核技巧)是一种能够将在原始数据空间中的非线性数据转化到高维线性可分的方法。而最开始学习机器学习的时候,也是在SVM中接触到的。不过在那个时候之后,就很少从理…

核方法(kernel Method)

核方法 核方法定义 一种能够将在原始数据空间中的非线性数据映射到高维线性可分的方法。 核方法的用处 1、低维数据非线性,当其映射到高维空间(feature space)时,可以用线性方法对数据进行处理。 2、线性学习器相对于非线性学…

核方法概述----正定核以及核技巧(Gram矩阵推导正定核)

在再谈SVM(hard-margin和soft-margin详细推导、KKT条件、核技巧)中我们大致谈到了核函数以及为什么要用核函数,今天在这里更加详细的介绍一下。 核方法 1.核函数概述2.正定核2.1定义2.2证明 3.核技巧4.常见的核函数 1.核函数概述 从前面的学…

nginx编译器安装以及编译

一:nginx编译器安装 1:nginx编译器下载安装 http://nginx.org/download/nginx-1.23.1.tar.gz ----下载网址(nginx-1.23.1.tar.gz-示例版本) 2:将tar -zxvf nginx-1.23.1.tar.gz传入home目录下 mkdir /home/nginxchm…

mac编译安装Nginx

一、安装wget 使用homebrew安装wget brew install wget安装wget时报错 tar: Error opening archive: Failed to open /Users/xxx/Library/Caches/… 发现是install libunistring的时候失败报错; 单独安装此依赖; 安装成功,再继续安装wget&#xff1…